課程簡介 Course Introduction
|
開課年度學期 Year / Term
|
113 學年度 第 2 學期
|
開課班級 Department
|
應用數學系 應數一
|
授課方式 Instructional Method
|
課堂教學 、 中英文雙語授課
|
課程電腦代號 Course Reference Number
|
150048
|
課程名稱(中文) Course Title(Chinese)
|
數論
|
課程名稱(英文) Course Title(English)
|
Number Theory
|
學分數/時數 Credit Hours
|
3 /
3
|
必(選)修 Requirement / Elective Course
|
選修
|
授課老師 Instructor
|
孫新民
|
助教 Teaching Assistant
|
|
上課時間 Meeting Time
|
星期四,節次3、4、5
|
上課教室 Classroom
|
JB103
|
Office Hours
|
孫新民:4444/789A
|
獲獎及補助情形 Awards and Grants |
|
聯合國永續發展目標 (SDGs跨域類別) Sustainable Development Goals, SDGs |
SDGs 04.
|
優質教育:確保有教無類、公平以及高品質的教育,及提倡終身學習
|
|
課程目標 Learning Objectives
|
數論為數學學習者及應用數學者所應具備的基本知識. 本課程為對數論之相關內容作一概略介紹.
|
先修 ( 前置 ) 課程 Prerequisite
|
|
彈性教學規劃 Flexible Teaching/Planning Schedules |
|
課程大綱 Course Syllabus
|
週次 Week |
課程單元大綱 Unit |
教學方式 Instructional Method/Style/Teaching Style |
參考資料或相關作業 References or Related Materials |
評量方式 Grading |
1
|
Divisibility
|
|
|
|
2
|
Prime Numbers
|
|
|
|
3
|
Factorization
|
|
|
|
4
|
Congruences I
|
|
|
|
5
|
Congruences II
|
|
|
|
6
|
Arithmetic Functions
|
|
|
|
7
|
放假
|
|
|
|
8
|
Euler’s theorem and Fermat’s little theorem
|
|
|
|
9
|
期中考
|
|
|
|
10
|
Primitive Roots I
|
|
|
|
11
|
Primitive Roots II
|
|
|
|
12
|
Quadratic Residues
|
|
|
|
13
|
Quadratic Reciprocity Law
|
|
|
|
14
|
Sums of Squares
|
|
|
|
15
|
The distribution of primes
|
|
|
|
16
|
An Introduction to Cryptography , 繳交期末報告
|
|
|
|
17
|
討論期末報告
|
|
|
|
18
|
討論期末報告
|
|
|
|
單一課程對應校能力指標程度 The Degree to Which Single Course Corresponds to School Competence
|
編號 No. |
校核心能力 School Core Competencies |
符合程度 Degree of conformity |
1
|
公民力 (Citizen)
|
3
|
2
|
自學力 (Self-learning)
|
4
|
3
|
資訊力 (Information)
|
4
|
4
|
創造力 (Creativity)
|
4
|
5
|
溝通力 (Communication)
|
5
|
6
|
就業力(Employability)
|
5
|
單一課程對應系能力指標程度 The Degree to Which Single Course Corresponds to Department Competence
|
編號 No. |
類別 Category |
系核心能力 Department Core Competencies |
符合程度 Degree of conformity |
01
|
系所
|
學生具備數學思考與推理能力
|
5
|
02
|
系所
|
學生擁有數學應用與解決問題能力
|
4
|
03
|
系所
|
學生具備代數、離散、統計及科學計算能力
|
3
|
04
|
系所
|
學生具有小學數學之專業教學能力
|
3
|
05
|
系所
|
學生具有跨領域之科學知識
|
4
|
06
|
系所
|
學生擁有閱讀討論與發表之專業能力
|
4
|
單一課程對應院能力指標程度 The Degree to Which Single Course Corresponds to College Competence
|
編號 No. |
院核心能力 College Core Competencies |
符合程度 Degree of conformity |
1
|
語文能力
|
4
|
2
|
溝通與合作能力
|
4
|
3
|
創新與實踐能力
|
4
|
4
|
專業知能
|
5
|
教科書或參考用書 Textbooks or Reference Books
|
館藏書名 Library Books
|
備註 Remarks
|
教材 [Crisman] K.-D. Crisman, Number Theory: In Context and Interactive, 2024. https://math.gordon.edu/ntic/ https://math.gordon.edu/ntic/ntic/chapter-prologue.html
[Raji] W. Raji, An Introductory Course in Elementary Number Theory. https://www.saylor.org/2013/05/blog-qa-with-dr-wissam-raji-author-of/ https://www.saylor.org/2013/05/blog-free-elementary-number-theory-open-textbook-released-under-cc-by/ https://www.math.usm.edu/perry/old_classes/mat421sp17/An-Introductory-Course-in-Elementary-Number-Theory.pdf
[Moser1957] L. Moser, An Introduction to the Theory of Numbers, 1957. http://www.trillia.com/moser-number.html
[Carmichael1914] R.D. Carmichael, The Theory of Numbers, John Wiley & Sons, Inc., 1914. (Gutenberg Release 2013)
[Nathanson2000] M.B. Nathanson, Elementary Methods in Number Theory, 2000. 電子書, 不能印書
[Schroeder2009] M.R. Schroeder, Number Theory in Science and Communication, Springer-Verlag, 5th ed., 2009. (1986. 512.7 S381) 電子書, 不能印書 (應用) ---------
參考用書 I.
[HW2008] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 6th ed., Clarendon Press, 2008. 512.7 H269 (入門經典書)
[NZM1991] I. Niven, H.S. Zuckerman, and H.L. Montgomery, An Introduction to The Theory of Numbers, 5th ed., John Wiley & Sons, Inc., 1991. 512.7 N734 (傳統教科書)
[Guy1994] R.K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, 1994. 512.7 G986
[Dickson1919] L.E. Dickson, History of the Theory of Numbers, Vol. I Divisibility and Primality, Vol. II Diophantine Analysis, Vol. III Quadratic and Higher Forms, Chelsea Publishing Co., 1919. (Reprinted by the American Mathematical Society, 1999) 512.709 D554 https://archive.org/details/historyoftheoryo01dick https://archive.org/details/historyoftheoryo02dick https://archive.org/details/historyoftheoryo03dick
[Carmichael1915] R.D. Carmichael, Diophantine Analysis, John Wiley & Sons, Inc., 1915. (Gutenberg Release 2006)
[Poritz2014] J.A. Poritz, Yet Another Introductory Number Theory Textbook, 2014.
[Dickson1929] L.E. Dickson, An Introduction to the Theory of Numbers, 1929. https://archive.org/details/in.ernet.dli.2015.466075/page/n11/mode/2up ------
參考用書 II. (需要代數及分析基礎)
[Shoup2008] V. Shoup, A Computational Introduction to Number Theory and Algebra, 2008. https://shoup.net/ntb/
[Stein2017] W. Stein, Elementary Number Theory: Primes, Congruences, and Secrets, 2017. https://wstein.org/ent/
[Rademacher] H. Rademacher, Lectures on Analytic Number Theory, 1954-1955. http://www.math.tifr.res.in/~publ/ln/tifr02.pdf
|
※請尊重智慧財產權,不得非法影印教科書※
※ Please respect intellectual property rights and do not illegally photocopy textbooks. ※
教學方法 Teaching Method
|
教學方法 Teaching Method
|
百分比 Percentage
|
講述
|
60 %
|
問題導向學習
|
20 %
|
討論
|
20 %
|
總和 Total |
100 % |
成績評量方式 Grading
|
評量方式 Grading |
百分比 Percentage |
平時成績
|
30 %
|
期中考
|
30 %
|
期末報告
|
40 %
|
總和 Total |
100 % |
成績評量方式補充說明
|
平時成績(作業撰寫,其他報告,課堂參與,含習題及點名)(30%)、期中考(30%)、期末報告(40%)
|
課程大綱補充資料 Supplementary Material of Course Syllabus
|
|
|