E-Course首頁

 114 學年度 第 1 學期 教育學系教育數位評量與數據分析碩士班 鄒慧英教師 迴歸分析 課程大綱

課程簡介   Course Introduction
開課年度學期
Year / Term
114 學年度 第 1 學期
開課班級
Department
教育學系教育數位評量與數據分析碩士班 教育學系數位評量教管碩一碩二合選
授課方式
Instructional Method
課堂教學 、 中文
課程電腦代號
Course Reference Number
112041
課程名稱(中文)
Course Title(Chinese)
迴歸分析
課程名稱(英文)
Course Title(English)
Regression Analysis
學分數/時數
Credit Hours
3 / 3
必(選)修
Requirement / Elective Course
選修
授課老師
Instructor
鄒慧英
助教
Teaching Assistant
上課時間
Meeting Time
星期四,節次3、4、5
上課教室
Classroom
ZB304
Office Hours
鄒慧英:4444/89AB

獲獎及補助情形   Awards and Grants

聯合國永續發展目標 (SDGs跨域類別)   Sustainable Development Goals, SDGs

課程目標   Learning Objectives
1.Stating the required assumptions, describing the procedures for estimating important parameters, explaining how to make and interpret inferences about these parameters, and providing examples illustrating the use of the techniques of multiple regression analysis.
2.Describing the statistical test appropriate for an overall test, a test for addition of a single variable, and a test for addition of a group of variables.
3.Describing the essential features of regression by multiple correlations, partial correlations, and multiple-partial correlations.
4.Describing two concepts-confounding and interaction relevant to quantify the relationship of one or more independent variables to a dependent variable.
5.Providing a general overview of regression diagnostics, including methods for analyzing residuals, assessing the influence of outliers, and assessing collinearity.
6.Describing available techniques to deal with the polynomial model, such as centering and the use of orthogonal polynomials.
7.Applying dummy variables: comparing several regression equations by use of a single multiple regression model.
8.Describing the strategies for selecting the best model when the primary goal of analysis is prediction, also a strategy for modeling in situations where the validity of the estimates of one or more regression coefficients is of primary importance.
 

先修 ( 前置 ) 課程   Prerequisite
 

彈性教學規劃   Flexible Teaching/Planning Schedules

課程大綱   Course Syllabus
週次
Week
課程單元大綱
Unit
教學方式
Instructional Method/Style/Teaching Style
參考資料或相關作業
References or Related Materials
評量方式
Grading
1 Introduction to Regression Anlaysis 09/11/2025  KKMN, Chapters 4~6; KNNL, Chapter 2   
2 Multiple regression analysis 09/18/2025  KKMN, Chapter 8; KNNL, Chapter 6~7.1   
3 Testing hypotheses in multiple regression 09/25/2025  KKMN, Chapter 9; KNNL, Chapter 7.2~7.3   
4 Testing hypotheses in multiple regression 10/02/2025  KKMN, Chapter 9; KNNL, Chapter 7.2~7.3   
5 Correlations: Multiple, partial, and semipartial 10/09/2025  KKMN, Chapter 10; KNNL, Chapter 7.4   
6 SPSS / R practice 10/16/2025     
7 SPSS / R practice 10/23/2025     
8 Midterm Exam 10/30/2025     
9 Confounding and interaction in regression 11/06/2025  KKMR, Chapter 11   
10 Dummy variables in regression 11/13/2025  KKMR, Chapter 12   
11 Regression diagnostics 11/20/2025  KKMR, Chapter 14; KNNL, Chapter 10   
12 Selecting the best regression equation 11/27/2025  KKMR, Chapter 16; KNNL, Chapter 9   
13 SPSS / R practice 12/04/2025     
14 SPSS / R practice 12/11/2025     
15 Final Exam 12/18/2025     
16 Holiday off 12/25/2025     
17 Holiday off 01/01/2026     
18 Midterm & Final Exam Discussion 01/08/2026     


單一課程對應校能力指標程度   The Degree to Which Single Course Corresponds to School Competence
編號
No.
校核心能力
School Core Competencies
符合程度
Degree of conformity

單一課程對應系能力指標程度   The Degree to Which Single Course Corresponds to Department Competence
編號
No.
類別
Category
系核心能力
Department Core Competencies
符合程度
Degree of conformity
01 系所 能分析與解釋量化與類別資料 0
02 系所 能批判量化研究設計 0
03 系所 能創新評量工具(碩) 0
04 系所 能整合科技進行測驗創新議題探討 0
05 系所 能發表測驗統計議題的論文 0
06 系所 能提供基礎水準測驗與統計問題的諮詢服務(碩) 0

單一課程對應院能力指標程度   The Degree to Which Single Course Corresponds to College Competence
編號
No.
院核心能力
College Core Competencies
符合程度
Degree of conformity


教科書或參考用書   Textbooks or Reference Books
館藏書名   Library Books
備註   Remarks
1.Kleinbaum, Kupper, Nizam, & Rosenberg(2013). Applied Regression Analysis and Other Multivariable Methods (5th). Cengage Learning.
2.Kutner, Nachtsheim, Neter, & Li (2005). Applied Linear Statistical Models (5th ed.). McGraw Hill.
3.Pedhazur, E. J. (1997). Multiple Regression in Behavioral Research: Explanation and Prediction (3rd). Thomson learning, Inc.

※請尊重智慧財產權,不得非法影印教科書※
※   Please respect intellectual property rights and do not illegally photocopy textbooks.  ※

教學方法   Teaching Method
教學方法
Teaching Method
百分比
Percentage
講述 50 %
討論 20 %
實作練習 30 %
總和  Total 100 %

成績評量方式   Grading
評量方式
Grading
百分比
Percentage
作業撰寫 40 %
期中考 25 %
期末考 25 %
口試 10 %
總和  Total 100 %

成績評量方式補充說明   
 

課程大綱補充資料   Supplementary Material of Course Syllabus