13.3 Multiple Comparison Procedures (p.615)

- Suppose that analysis of variance has provided statistical evidence to reject the null hypothesis of equal population means.
- Fisher's least significant difference (LSD) procedure can be used to determine where the differences occur.

Hypotheses:	$ \begin{array}{l} H_0: \ \mu_i = \mu_j \\ H_a: \ \mu_i \neq \mu_j \end{array} $
Test Statistic:	$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$

p-value approach: Reject H_0 if the *p*-value ≤ 0.05

Critical value approach: Reject H_0 if $t \leq -t_{lpha/2}$ or $t \geq t_{lpha/2}$

Where the value of $t_{\alpha/2}$ is based on a t distribution with $n_T - k$ degrees of freedom.

Go back to 13.1 example (p.600)

	Method		
	Α	В	С
	58	58	48
	64	69	57
	55	71	59
	66	64	47
	67	68	49
Sample mean	62	66	52
Sample variance	27.5	26.5	31.0
Sample standard deviation	5.244	5.148	5.568

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	<i>p</i> -value
Treatments	520	2	260.00	9.18	.004
Error	340	12	28.33		
Total	860	14			

Now, let's compare method A and method B

$$t = \frac{62 - 66}{\sqrt{28.33\left(\frac{1}{5} + \frac{1}{5}\right)}} = -1.19$$

Because we have a two-tailed test, the p-value is two times the area under the curve for the t distribution to the left of t = -1.19.

Area in Upper Tail	.20	.10	.05	.025	.01	.005
χ² Value (293 <i>df</i>)	.873	1.356	1.782	2.179	2.681	3.055
t = 1.19						

Doubling these amounts, we see that the p-value is greater than α = .05, we cannot reject the null hypothesis. So, is there any difference of population means between method A and method B?

(老師補充) 其實用 critical value 檢驗的概念來理解 LSD 比較容易

 $|t| \ge t_{\alpha/2}$ 拒絕 HO, Ha 成立,兩個母體平均數有差異

$$\text{LSD} = 2.179 \sqrt{28.33 \left(\frac{1}{5} + \frac{1}{5}\right)} = 7.34$$

Method A vs. Method B

Method A vs. Method C

Method B vs. Method C

Exercise 14 (p.619)

	Treatment 1	Treatment 2	Treatment 3
	63	82	69
	47	72	54
	54	88	61
	40	66	48
\overline{x}_{j}	51	77	58
s_j^2	96.67	97.34	81.99

14. The following data are from a completely randomized design. In the following calculations, use $\alpha = .05$.

a. Use analysis of variance to test for a significant difference among the means of the three treatments.

b. Use Fisher's LSD procedure to determine which means are different.