2020/10/19 生產與作業管理

"Chapter 5: Project Management

Outline

- **1** What is project management?
- **2** Structuring projects
- **3** Work breakdown structure
- 4 Project control charts
- **5** Earned Value Management (EVM)
- 6 Network-planning models

1. What is project management?

- Project : a series of related jobs usually directed toward some major output and requiring a significant period of time to perform.
- Project management: planning, directing, and controlling resources (people, equipment, material) to meet the technical, cost, and time constraints of the project.

台南鐵路地下化預計2022年通車

2019-04-07 23:20

[記者劉婉君/台南報導]台南鐵路地下化預計2022年底通車,全長8.23公里,沿線共有9處平 交道、8處車行及人行地下道及2處鐵路橋涵、3處陸橋,也將在地下化後消除。

台南鐵路地下化北起大橋車站南端,南至大林路平交道以南約0.53公里,沿線經過包括實踐 街、東豐路、青年路、復興路、榮譽街、生產路、龍寶路、後勤司令部、大林路等9處平交道; 長榮、小東、民族四維、府連、林森大同地下道,以及台南車站、衛民街、崇明街等3處人行地 下道;開元路、東門、中華陸橋;光華街、月見堂溪鐵路橋涵等。

鐵道局第六工務段表示,四維、林森大同、小東地下道及中華陸橋,均不在此次計畫中,開元 國小兩座人行陸橋目前已拆除1座,另1座將改建。

工務局指出,地下道每遇颱風豪雨即易淹水,因此鐵路地下化後將填平,小東、四維、林森大同、中華陸橋等,若工程未來有剩餘款或向中央爭取經費,也希望納入填平與拆除。

不過,台南民間發起保留壽陸橋(四維地下道)連署活動,希望留下日治時期興建的壽陸橋, 工務局也表示,雖然文資審議後評估整座橋梁未達文資價值,但也希望輔導做文資保存,至於 保留方式還要再討論。

Ĺ

傳承近 300 年的藺編產業,在多方的努力之下,踏實穩定的成長著,但是看似前景樂觀的產業,卻面臨老舊機器損毀的危機...。

7 天前

7 天前

請問 P4178SDPP3MYXEJDLBHU的出貨日期? 謝謝!

藺子 提案人 贊助人

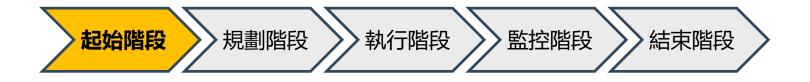
您好,不好意思我們在出貨通知上沒有做到很完善,沒有及時更新給各位,如造成困擾十分抱歉。 我幫您查詢出貨的日期,您的商品預計於10/21-22之間寄出,謝謝您的耐心等候。也非常抱歉因為手工製作速度較不能掌控,我們在出貨期程上不斷 更改,請您見諒。謝謝您~

Play ►

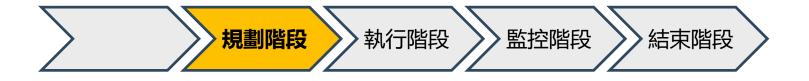
福化一天礼

回覆這則留言

3:59


持

- 最後完成的任務結果為客戶所接受(The outcome of task is acceptable)
- 任務「如期」履行(The task is completed as scheduled)
- 任務「在預算之内」履行(The task is performed within the planned budget)
- 專案發展流程對進行中的企業營運影響最小(The less impact on the business operations)


- 1 起始階段 (Initial)
- 2 規劃階段 (Planning)
- <mark>3</mark> 執行階段 (Executing)
- 4 監控階段 (Control)
- 5 結束階段 (Closing)

- 定義問題
- 針對問題發展出解決方案和專案章程
- 辨識出與專案相關的利害關係者(例如: 顧客、供應商、

贊助者、職能經理等)

• 此階段有賴於專案經理的居中協調, 使大家達到共識

- 一般而言,在此階段需投入最多心力,因為計畫越周詳, 活動切割越細緻,顧全的層面越多,後續執行與追蹤階 段會更加順暢與有效率

- 專案經理人運用溝通管理知識,了解及掌握專案利害關 係者的需求與期望
- 運用人資管理知識,建立並發展自己的專案團隊
- 運用採購和品質管理知識, 輔助專案的推行

- 專案執行過程中不斷監督及控制各個流程是否符合原先計畫
- 一旦發現有偏差, 就必須立刻採取必要措施, 將流程倒會正軌
- 若無法還原, 也要做出修正或彌補, 降低負面影響

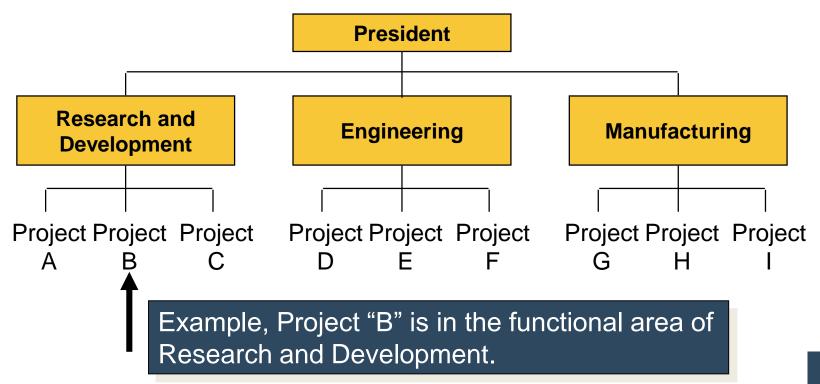
- 專案經理運用採購管理知識,針對專案中所採購產品或服務 進行「合約結案」及稽核審查工作
- 整合管理知識,將團隊成員在專案各個階段結束及整個專案 結束之後,所學到的成功及失敗經驗,轉化為文件紀錄下來, 做為日後其他專案的參考及借鏡

專案管理所需的十大知識領域(補充)

2. Structuring projects

- a. Pure project
- b. Functional project
- c. Matrix project

- Small and self-contained team works full time on the project
- Project manager has full authority over the project
- Team members report to one boss
- Lines of communication are shortened. Quick decision
- Team pride, motivation, and commitment are high

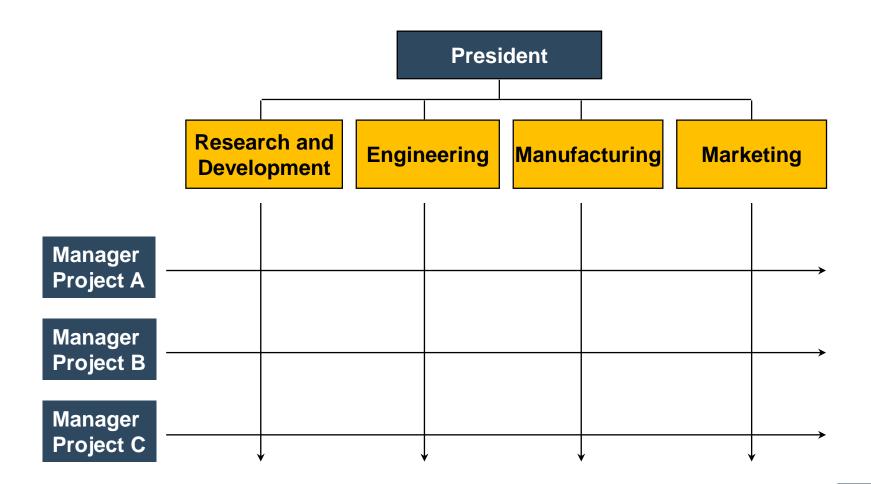


But...

- Duplication of resources
- Team members are often both physically and psychologically removed from headquarters
- The organization falls behind in its knowledge of new technology due to weakened functional divisions
- Team members may worry about life-after-project, or the project termination is delayed

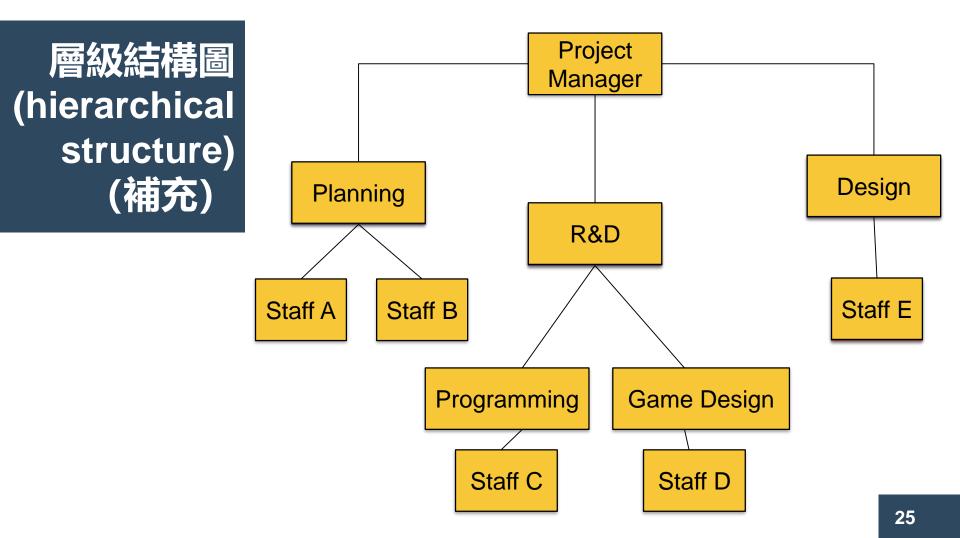
Functional project

• The project is executed within a functional division


- A team member can work on several projects
- Technical expertise is maintained within the functional area
- The functional area is a "home" after the project is completed
- Critical mass of specialized knowledge

But...

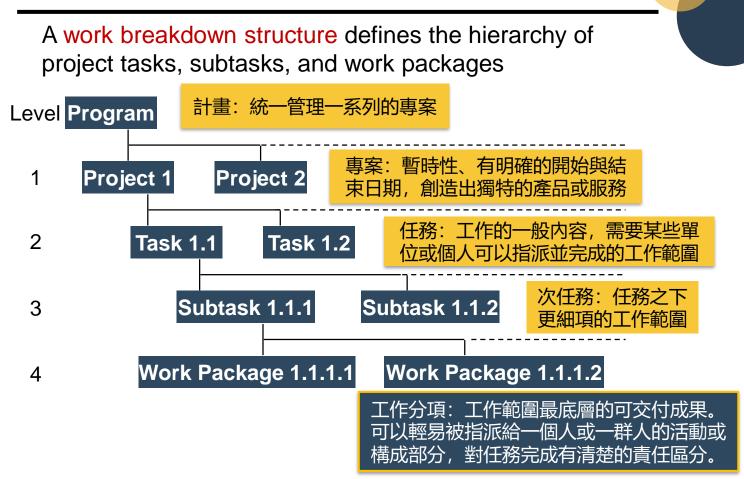
- Aspects of the project that are not directly related to the functional area get short-changed (less changes)
- Motivation of team members is often weak
- Needs of the client are secondary and are responded to slowly


- To blend properties of functional and pure project structures
- The project manager decides what tasks and when they will be performed
- Different projects borrow/share resources from functional areas

- Enhanced communications between functional areas
- Pinpointed responsibility
- Duplication of resources is minimized
- Functional "home" for team members
- Policies of the parent organization are followed

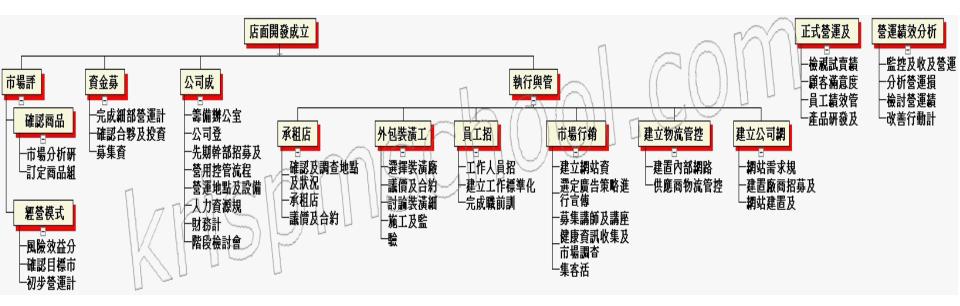
But...

- Too many bosses
- Depends on project manager's negotiating skills
- Potential for sub-optimization (局部最佳化)



RACI矩陣 (補充)

- R (Responsible, 負責者): 實際執行工作的人
- A (Accountable, 當責者): 為成果負起完全責任 (only 1 person)
- C (Consulted, 諮詢者): 顧問或提供諮詢者
- I (Informed, 被告知者):任務完成後,必須被知會的人


	王明	陳宜	曾美	李保	吳花
企畫	AR	С	Ι	I	С
製作	A	R	R	С	С
行銷	I	А	R	I	С
客服		А		R	I

3. Work Breakdown Structure

	Le	evel			
1	2	3	4		
x				1	Optical simulator design
	x			1.1	Optical design
	1000	x		1.1.1	Telescope design/fab
		x		1.1.2	Telescope/simulator optical interface
		x		1.1.3	Simulator zoom system design
		x		1.1.4	Ancillary simulator optical component specification
	x			1.2	System performance analysis
	1995	x		1.2.1	Overall system firmware and software control
		- Carrier	x		Logic flow diagram generation and analysis
			x	1.2.1.2	
		x		1.2.2	
		x		1.2.3	
		x		1.2.4	Data recording and reduction requirements
	X			1.3	System integration
	X			1.4	Cost analysis
		x		1.4.1	Cost/system schedule analysis
		x		1.4.2	Cost/system performance analysis
	x	1.000		1.5	Management
		x		1.5.1	System design/engineering management
		x		1.5.2	Program management
	x			1.6	Long lead item procurement
	1000	x		1.6.1	Large optics
		x		1.6.2	Target components
		x		1.6.3	Detectors

WBS範例:店面開發成立


4. Project Control Charts

- Charts provide an easily understood visual presentation.
- Software can be used to create the charts.
- Gantt charts show, in a graphic manner, the amount of time involved and the sequence of activities. Often referred to as a bar chart.

Activity Contract negotiated Contract signed Long lead procurement Manufacturing schedules Bill of materials Short lead procurement Material specifications Manufacturing plans Start-up 10 12 14 16 8 6 Weeks after start of project

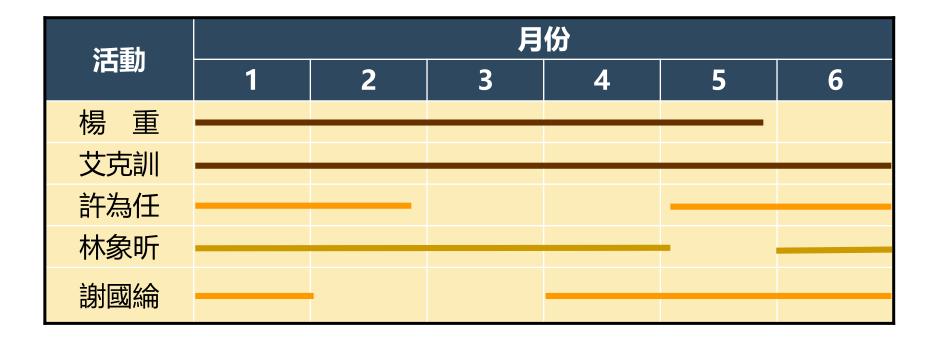
Gantt Chart for Single Activities

Project Report Samples

- Gantt chart
 - 由Henry Gannt於1900年代發展出來
 - 被使用來描述專案工作在日程表上進行的長條圖
 - 橫軸表示時間
 - 縱軸代表所需進行的各項活動
 - 可判斷各項活動的實際進度,以作為適當的時間規劃

編		2001							
號	工作名稱	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	問題分析								
2	需求分析								
3	邏輯設計								
4	決策分析								
5	實體設計								
6	建構與測試								
7	實作與發布								

	完成的工作
圖例說明	
	未完成的工作


- 繪圖容易, 易以手工方式完成
- 易看、易瞭解
- 缺點
 - 作業間順序不清楚
 - 工程管理重點不易判斷
 - 作業延遲對專案影響難掌握

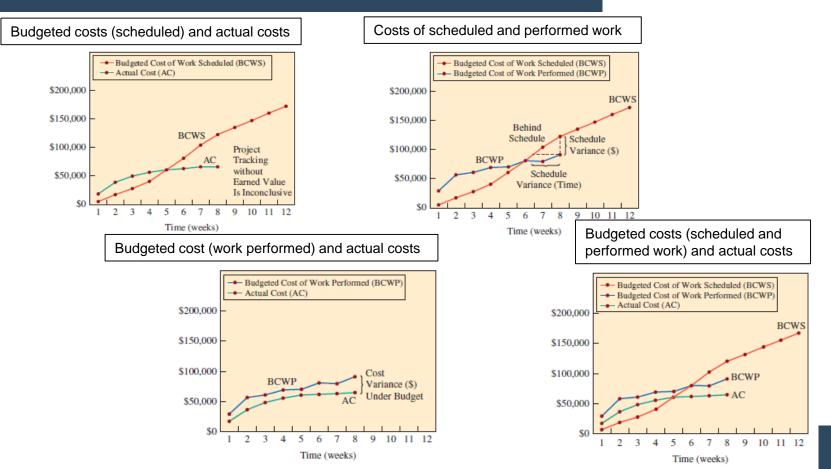
• 經過調整的甘特圖

- · 縱軸是組織成員或各種資源
- 可做適當的調度與調整

以腳踏車廠商研發團隊為例

5. Earned Value Management (EVM)

- A technique for measuring project progress in an objective manner
- Has the ability to combine measurements of scope, schedule, and cost in a project
- Provides a method for evaluating the relative success of a project at a point in time

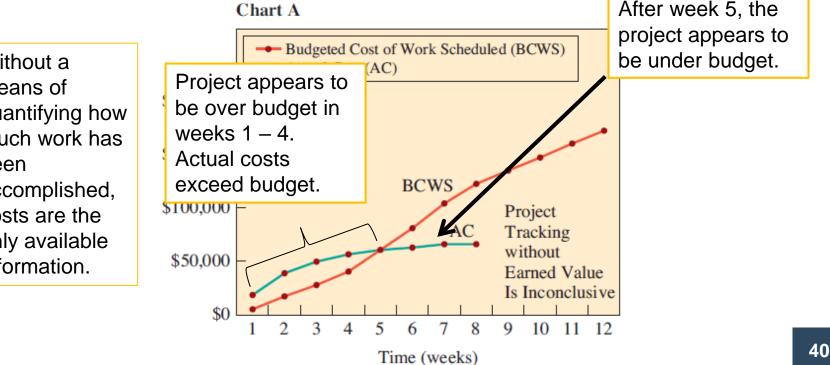

Earned Value Management – Essential Features

A project plan that identifies the activities to be accomplished

A valuation of each activity work

Predefined earning or costing rules to quantify the accomplishment of work

Earned Value Management Charts

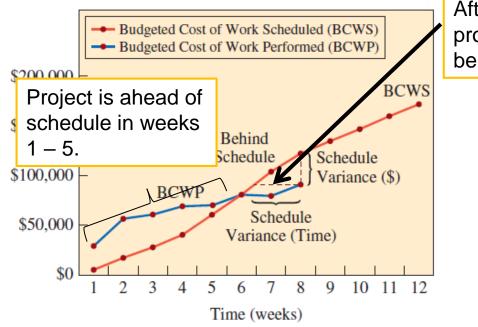

39

Project Tracking without EVM

A simple comparison of just costs versus budget does not tell the whole story

Chart A

Without a means of quantifying how much work has been accomplished, costs are the only available information.

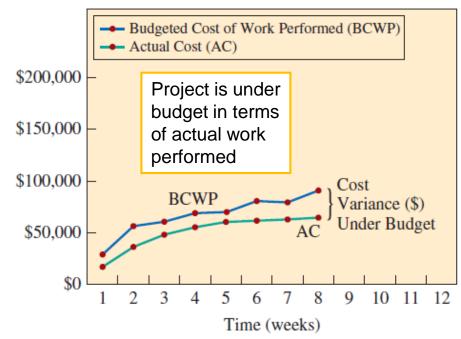


Project Tracking with EVM

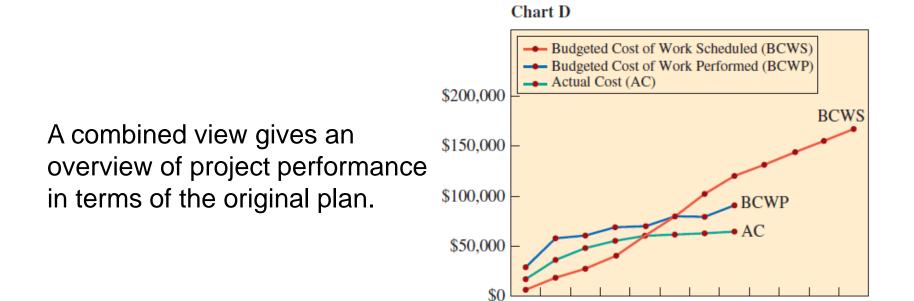
With pre-defined methods of quantifying the quantity of work accomplished, EVM provides much more information.

Chart B

EVM provides information about performance according to the schedule.

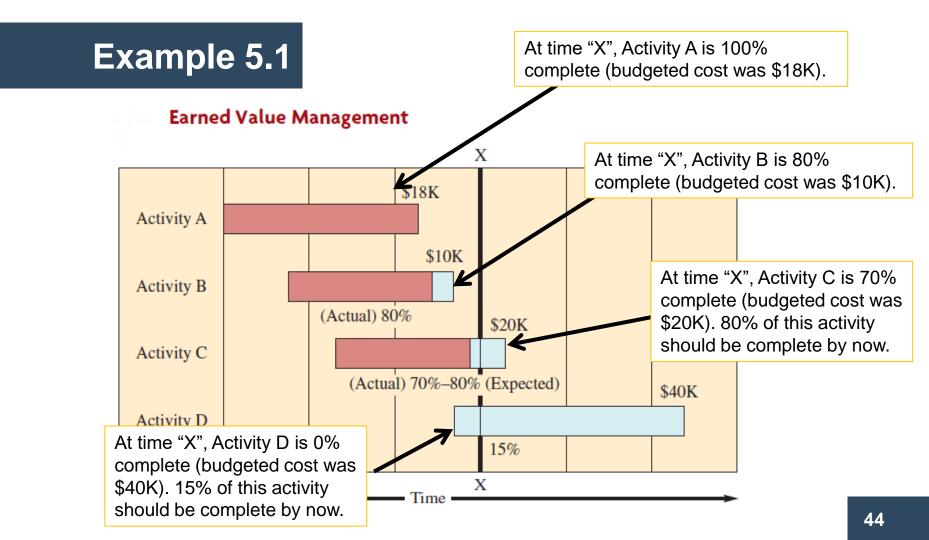


After week 6, the project has fallen behind schedule.


Project Tracking with EVM

With pre-defined methods of quantifying the quantity of work accomplished, EVM provides much more information.

Chart C

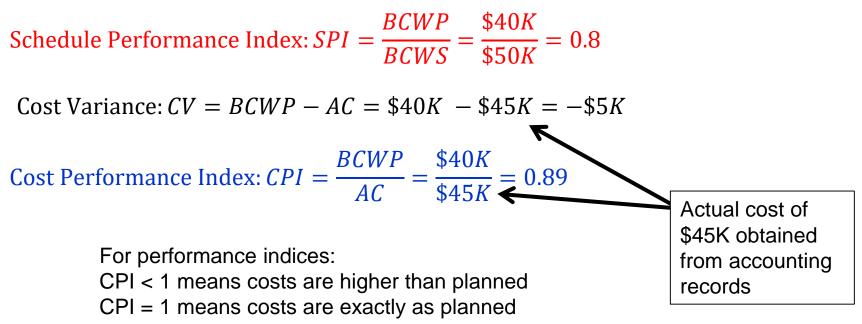


Project Tracking with EVM

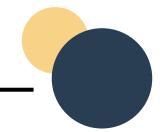
11 12

Time (weeks)

Example 5.1 – Budgeted Cost of Work Scheduled (BCWS)


- Activity A 100% of \$18K = \$18K
- Activity B 100% of \$10K = \$10K
- Activity C 80% of \$20K = \$16K
- Activity D 15% of 40K = 6K
- BCWS = \$18K + \$10K + \$16K + \$6K = \$50K

Example 5.1 – Budgeted Cost of Work Performed (BCWP)

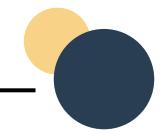

- Activity A 100% of \$18K = \$18K
- Activity B 80% of \$10K = \$8K
- Activity C 70% of \$20K = \$14K
- Activity D 0% of 40K = 0K
- BCWP = \$18K + \$8K + \$14K + \$0K = \$40K

Example 5.1 – Performance Measures

Schedule Variance: SV = BCWP - BCWS = \$40K - \$50K = -\$10K

CPI > 1 means costs are lower than planned

6. Network-planning models

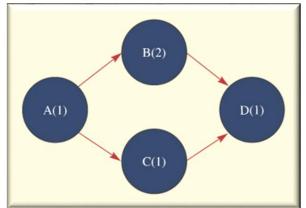

- PERT
- CPM

計畫評核術 (program evaluation and review technique, PERT)

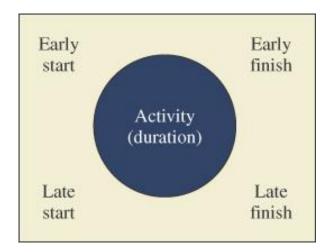
- 1958年由美國海軍北極星潛水艇的飛彈計畫研究小組所研發
- 針對較大型且較難控制的專案所設計
- PERT呈現網路狀
 - 事件 (event) : 完成某項活動
 - 要徑 (critical path): 在PERT網路裡需時最長的路徑
 - 寬鬆時間 (slack time): 在不會對整體任務造成延遲的情形
 下,單一活動可以延誤的時間

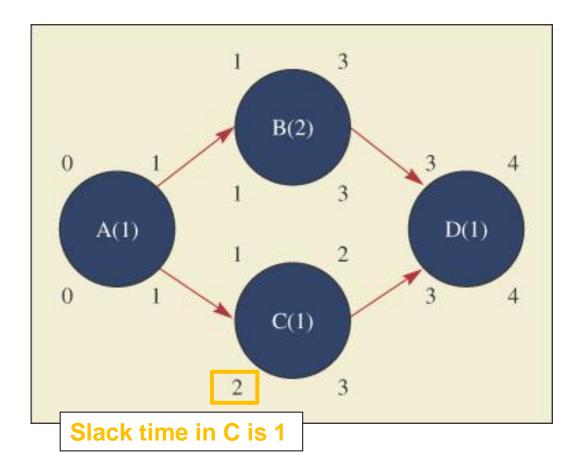
Critical path method (CPM)

- A project is made up of a sequence of activities that form a network representing a project
- The path taking longest time through this network of activities is called the "critical path"
- If any one of the activities in the critical path is delayed, then the entire project is delayed.


Types of Critical Path Methods

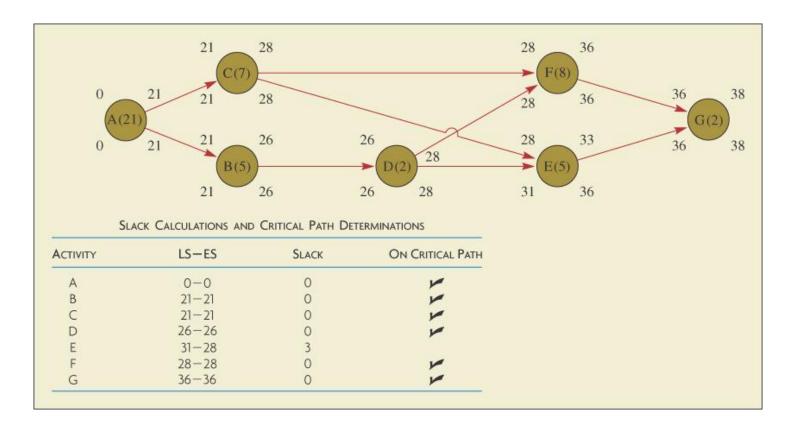
- a) CPM with a Single Time Estimate
- b) CPM with Three Activity Time Estimates
- c) Time-Cost Models


A. CPM with a Single Time Estimate

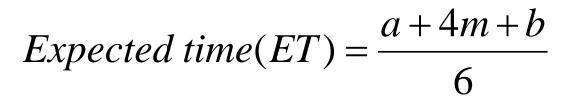

- Used when activity times are known with certainty
- Identify each activity to be done in the project and estimate how long it will take to complete each activity.
 - For example, A(1), B(2), C(1), D(1)
- Determine the required sequence of activities and construct a network reflecting the precedence relationships.

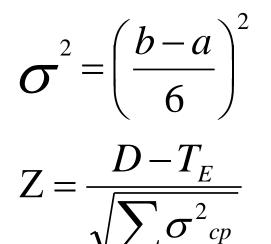
Activity	Designation Immediate Predecesso		Time (week)
Select company	А	None	1
Obtain annual report and perform ratio analysis	В	A	2
Collect stock price data and perform technical analysis	С	A	1
Review data and make a decision	D	B & C	1

- Determine the critical path (from the beginning to the end of the project)
 - A B D
 - A C D
- 4. Determine the early start/finish and late start/finish schedule



Example 5.2

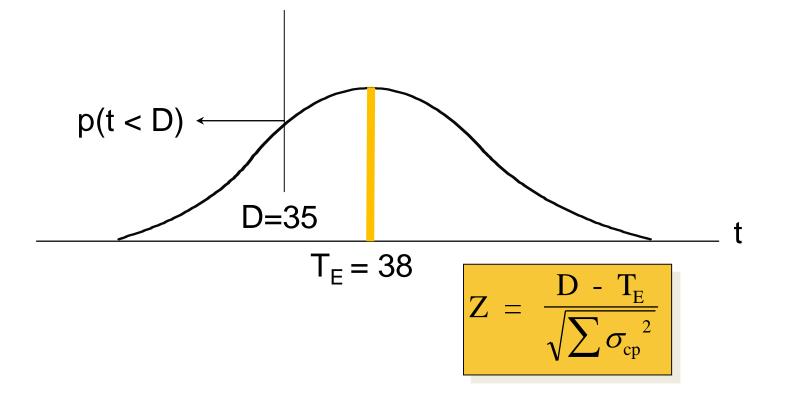

	CPM ACTIVITY DESIGNATIONS AND TIME ESTIMATES				
Αςτινιτγ	Designation	Immediate Predecessors	Time (weeks)		
Design	A	-	21		
Build prototype	A B	A	5		
Evaluate equipment	С	A	7		
Test prototype	D	В	2		
Write equipment report	E	C, D	5		
Write methods report	F	C, D	5 8		
Write final report	G	E, F	2		
A(21)		F(8)			
B(5)	D(2)	E(5)			

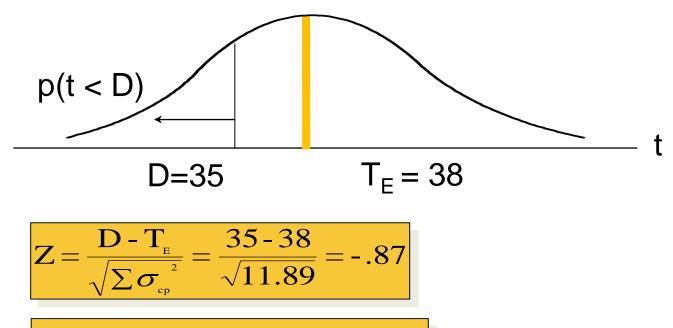


B. CPM with Three Activity Time Estimates

- Used when activity times are uncertain
- Used to obtain the same information as the Single Time
 Estimate model and probability information
- Refer to pp. 145-146 for more steps.

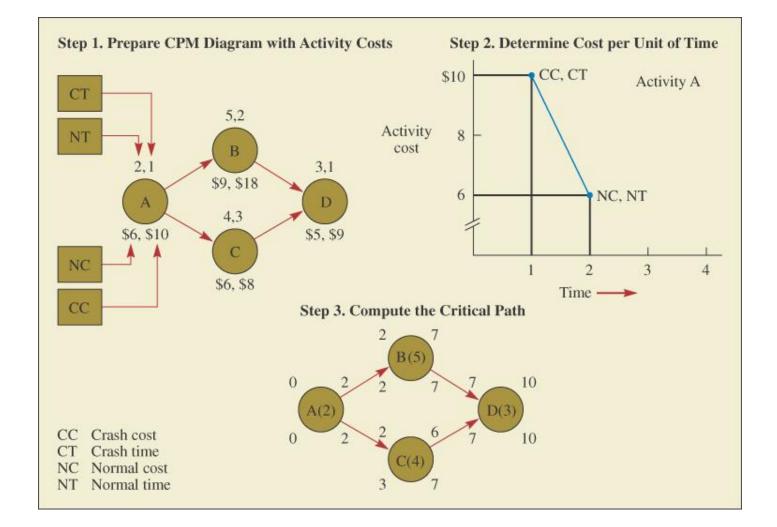



Exhibit 5.8


Activity Expected Times and Variances

	Αςτινιτγ	Тім	e Estin	IATES	EXPECTED TIMES (ET) a + 4m + b	ACTIVITY VARIANCES (σ^2) $(b-a)^2$
ACTIVITY	DESIGNATION	а	m	b	6	$\left(\begin{array}{c} 6 \end{array} \right)$
Design	А	10	22	28	21	9
Build prototype	В	4	4	10	5	1
Evaluate equipment	С	4	6	14	7	2 7 9
Test prototype	D	1	2	3	2	<u>1</u> 9
Write report	E	1	5	9	5	1 7 9
Write methods report	F	7	8	9	8	1
Write final report	G	2	2	2	2	0

What is the probability of finishing this project in less than 35 days?


p(Z < -.87) = .1922, or 19.22 %

There is a 19.22% probability that this project will be completed in less than 35 weeks.

C. Time-cost models

- -
- Used when cost trade-off information is a major consideration in planning
- Used to determine the least cost in reducing total project time

- Prepare a CPM-type network diagram
 - NC, NT, CT, CC
- Determine the cost per unit of time
- Compute the critical path
- Shorten the critical path at the least cost
- Plot project direct, indirect, and total cost curves and find the minimum-cost schedule

Exhibit 5.11

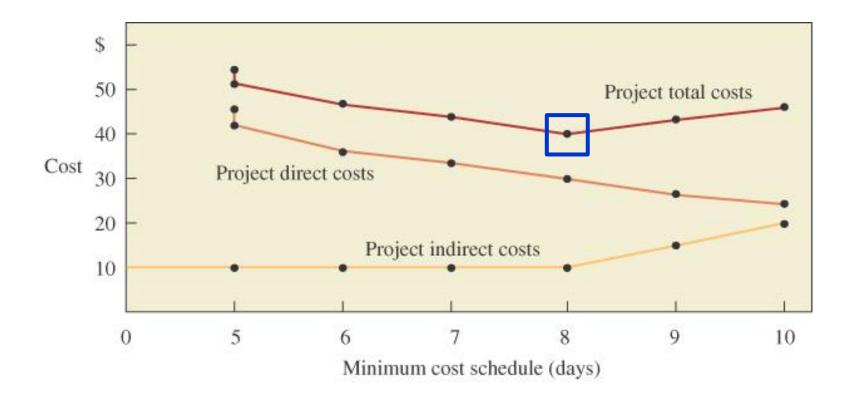
Calculation of Cost per Day to Expedite Each Activity

ACTIVITY	CC – NC	NT – CT	$\frac{\mathrm{CC}-\mathrm{NC}}{\mathrm{NT}-\mathrm{CT}}$	Cost per Day to Expedite	NUMBER OF DAYS ACTIVITY MAY BE SHORTENED
A	\$10 — \$6	2 — 1	$\frac{\$10 - \$6}{2 - 1}$	\$4	1
В	\$18 — \$9	5 - 2	$\frac{\$18 - \$9}{5 - 2}$	\$ 3	3
С	\$8 — \$6	4 - 3	$\frac{\$8-\$6}{4-3}$	\$2	1
D	\$9 — \$5	3 — 1	$\frac{\$9-\$5}{3-1}$	\$2	2

Exhibit 4.9

exhibit 4.9 A. Calculation of Cost per Day to Expedite Each Activity

ACTIVITY	CC – NC	NT – CT	$\frac{\text{CC} - \text{NC}}{\text{NT} - \text{CT}}$	Cost per Day to Expedite	Maximum Number of Days Activity May Be Shortened
А	\$10 - \$6	2 – 1	$\frac{\$10 - \$6}{2 - 1}$	\$4	1
В	\$18 - \$9	5 – 2	<u>\$18 - \$9</u> 5 - 2	\$3	3
С	\$8 - \$6	4 - 3	$\frac{\$8 - \$6}{4 - 3}$	\$2	1
D	\$9 — \$5	3 — 1	<u>\$9 - \$5</u> 3 - 1	\$2	2


B. Reducing the Project Completion Time One Day at a Time

Current Critical Path(s)	Remaining Number of Days Activity May Be Shortened	Cost per Day to Expedite Each Activity	Least-Cost Activity to Expedite	Total Cost of All Activities in Network	Project Completion Time
ABD	All activity times and	costs are normal.		\$26	10
ABD	A–1, B–3, D–2	A-4, B-3, D-2	D	28	9
ABD	A–1, B–3, D–1	A-4, B-3, D-2	D	30	8
ABD	A–1, B–3	A-4, B-3	В	33	7
ABD ACD	A–1, B–2, C–1	A-4, B-3, C-2	A*	37	6
ABD ACD	B–2, C–1	B–3, C–2	B&C1	42	5
ABD ACD	B-1	B-3	B+	45	5

*To reduce the critical path by one day, reduce either A alone or B and C together at the same time (either B or C by itself just modifies the critical path without shortening it).

[†]B and C must be crashed together to reduce the path by one day.

⁺Crashing activity B does not reduce the length of the project, so this additional cost would not be incurred.

Solution & HW