Calculus(II) HW14 (06/11)

Sec.7.3 \# 5

Evaluate the integral.

$\int \frac{\sqrt{x^{2}-1}}{x^{4}} d x$
[Solution]
Let $x=\sec \theta$, where $0 \leq \theta \leq \frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$. Then $d x=\sec \theta \tan \theta d \theta$ and $\sqrt{x^{2}-1}=\sqrt{\sec ^{2} \theta-1}=\sqrt{\tan ^{2} \theta}=|\tan \theta|=\tan \theta$ for the relevant values of θ, so

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-1}}{x^{4}} d x & =\int \frac{\tan \theta}{\sec ^{4} \theta} \sec \theta \tan \theta d \theta=\int \tan ^{2} \theta \cos ^{3} \theta d \theta \\
& =\int \sin ^{2} \theta \cos \theta d \theta \stackrel{\mathrm{~s}}{=} \int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \sin ^{3} \theta+C \\
& =\frac{1}{3}\left(\frac{\sqrt{x^{2}-1}}{x}\right)^{3}+C=\frac{1}{3} \frac{\left(x^{2}-1\right)^{3 / 2}}{x^{3}}+C
\end{aligned}
$$

Sec.7.3 \# 15

Evaluate the integral.

$\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x$
[Solution]
Let $x=a \sin \theta, d x=a \cos \theta d \theta, x=0 \quad \Rightarrow \quad \theta=0$ and $x=a \quad \Rightarrow \quad \theta=\frac{\pi}{2}$. Then

$$
\begin{aligned}
\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x & =\int_{0}^{\pi / 2} a^{2} \sin ^{2} \theta(a \cos \theta) a \cos \theta d \theta=a^{4} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta \\
& =a^{4} \int_{0}^{\pi / 2}\left[\frac{1}{2}(2 \sin \theta \cos \theta)\right]^{2} d \theta=\frac{a^{4}}{4} \int_{0}^{\pi / 2} \sin ^{2} 2 \theta d \theta=\frac{a^{4}}{4} \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 \theta) d \theta \\
& =\frac{a^{4}}{8}\left[\theta-\frac{1}{4} \sin 4 \theta\right]_{0}^{\pi / 2}=\frac{a^{4}}{8}\left[\left(\frac{\pi}{2}-0\right)-0\right]=\frac{\pi}{16} a^{4}
\end{aligned}
$$

Sec.7.3 \# 19
Evaluate the integral.
$\int \frac{\sqrt{1+x^{2}}}{x} d x$
[Solution]
Let $x=\tan \theta$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Then $d x=\sec ^{2} \theta d \theta$ and $\sqrt{1+x^{2}}=\sec \theta$, so

$$
\begin{aligned}
\int \frac{\sqrt{1+x^{2}}}{x} d x & =\int \frac{\sec \theta}{\tan \theta} \sec ^{2} \theta d \theta=\int \frac{\sec \theta}{\tan \theta}\left(1+\tan ^{2} \theta\right) d \theta \\
& =\int(\csc \theta+\sec \theta \tan \theta) d \theta \\
& =\ln |\csc \theta-\cot \theta|+\sec \theta+C \quad[\text { by Exercise 7.2.39] } \\
& =\ln \left|\frac{\sqrt{1+x^{2}}}{x}-\frac{1}{x}\right|+\frac{\sqrt{1+x^{2}}}{1}+C=\ln \left|\frac{\sqrt{1+x^{2}}-1}{x}\right|+\sqrt{1+x^{2}}+C
\end{aligned}
$$

Sec.7.3 \# 26
Evaluate the integral.
$\int \frac{x^{2}}{\left(3+4 x-4 x^{2}\right)^{3 / 2}} d x$
[Solution]
$3+4 x-4 x^{2}=-\left(4 x^{2}-4 x+1\right)+4=2^{2}-(2 x-1)^{2}$.
Let $2 x-1=2 \sin \theta$, so $2 d x=2 \cos \theta d \theta$ and $\sqrt{3+4 x-4 x^{2}}=2 \cos \theta$.
Then

$$
\begin{aligned}
\int \frac{x^{2}}{\left(3+4 x-4 x^{2}\right)^{3 / 2}} d x & =\int \frac{\left[\frac{1}{2}(1+2 \sin \theta)\right]^{2}}{(2 \cos \theta)^{3}} \cos \theta d \theta \\
& =\frac{1}{32} \int \frac{1+4 \sin \theta+4 \sin ^{2} \theta}{\cos ^{2} \theta} d \theta=\frac{1}{32} \int\left(\sec ^{2} \theta+4 \tan \theta \sec \theta+4 \tan ^{2} \theta\right) d \theta \\
& =\frac{1}{32} \int\left[\sec ^{2} \theta+4 \tan \theta \sec \theta+4\left(\sec ^{2} \theta-1\right)\right] d \theta \\
& =\frac{1}{32} \int\left(5 \sec ^{2} \theta+4 \tan \theta \sec \theta-4\right) d \theta=\frac{1}{32}(5 \tan \theta+4 \sec \theta-4 \theta)+C \\
& =\frac{1}{32}\left[5 \cdot \frac{2 x-1}{\sqrt{3+4 x-4 x^{2}}}+4 \cdot \frac{2}{\sqrt{3+4 x-4 x^{2}}}-4 \cdot \sin ^{-1}\left(\frac{2 x-1}{2}\right)\right]+C \\
& =\frac{10 x+3}{32 \sqrt{3+4 x-4 x^{2}}}-\frac{1}{8} \sin ^{-1}\left(\frac{2 x-1}{2}\right)+C
\end{aligned}
$$

