Calculus(II) HW6 (04/09)

Sec.5.3 # 4

3–7 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curve about the *y*-axis.

$$y = x^2, \quad y = 0, \quad x = 1$$

[Solution]

$$V = \int_0^1 2\pi x \cdot x^2 dx = 2\pi \int_0^1 x^3 dx$$
$$= 2\pi \left[\frac{1}{4}x^4\right]_0^1 = 2\pi \cdot \frac{1}{4} = \frac{\pi}{2}$$

Sec.5.3 # 6

3-7 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curve about the *y*-axis.

$$y = 4x - x^2, \quad y = x$$

[Solution]

$$4x - x^2 = x \Leftrightarrow 0 = x^2 - 3x \Leftrightarrow 0 = x(x - 3) \Leftrightarrow x = 0 \text{ or } 3.$$

$$V = \int_0^3 2\pi x [(4x - x^2) - x] dx$$
$$= 2\pi \int_0^3 (-x^3 + 3x^2) dx$$
$$= 2\pi \left[-\frac{1}{4}x^4 + x^3 \right]_0^3$$
$$= 2\pi \left(-\frac{81}{4} + 27 \right) = 2\pi \left(\frac{27}{4} \right) = \frac{27}{2}\pi$$

Sec.5.3 # 11

9–14 Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves about the *x*-axis.

$$y = x^{3/2}$$
, $y = 8$, $x = 0$

[Solution]

$$y=x^{3/2} \quad \Rightarrow \quad x=y^{2/3}.$$
 The shell has radius

y, circumference $2\pi y$, and height $y^{2/3}$, so

$$V = \int_0^8 2\pi y (y^{2/3}) \, dy = 2\pi \int_0^8 y^{5/3} \, dy$$
$$= 2\pi \left[\frac{3}{8} y^{8/3} \right]_0^8$$
$$= 2\pi \cdot \frac{3}{8} \cdot 256 = 192\pi$$

Sec.5.3 # 15

15–20 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.

$$y = x^3$$
, $y = 8$, $x = 0$; about $x = 3$

[Solution]

The shell has radius 3 - x, circumference

$$2\pi(3-x)$$
, and height $8-x^3$.

$$V = \int_0^2 2\pi (3 - x)(8 - x^3) dx$$

$$= 2\pi \int_0^2 (x^4 - 3x^3 - 8x + 24) dx$$

$$= 2\pi \left[\frac{1}{5}x^5 - \frac{3}{4}x^4 - 4x^2 + 24x \right]_0^2$$

$$= 2\pi \left(\frac{32}{5} - 12 - 16 + 48 \right) = 2\pi \left(\frac{132}{5} \right) = \frac{264\pi}{5}$$

Sec.6.1 # 11

3–16 A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$$g(x) = 1 - \sin x$$

[Solution]

$$g(x) = 1 - \sin x$$
. $g(0) = 1$ and $g(\pi) = 1$, so g is not one-to-one.

Sec.6.1 # 24

23-28 Find a formula for the inverse of the function.

$$f(x) = \frac{4x-1}{2x+3}$$

$$3y+1=(4-2y)x \quad \Rightarrow \quad x=\frac{3y+1}{4-2y}.$$
 Interchange x and y : $y=\frac{3x+1}{4-2x}.$ So $f^{-1}(x)=\frac{3x+1}{4-2x}.$

Sec.6.1 # 25

23-28 Find a formula for the inverse of the function.

$$f(x) = 1 + \sqrt{2 + 3x}$$

[Solution]

$$y = f(x) = 1 + \sqrt{2 + 3x}$$
 $(y \ge 1)$ $\Rightarrow y - 1 = \sqrt{2 + 3x}$ $\Rightarrow (y - 1)^2 = 2 + 3x$ $\Rightarrow (y - 1)^2 - 2 = 3x$ $\Rightarrow x = \frac{1}{3}(y - 1)^2 - \frac{2}{3}$. Interchange x and y : $y = \frac{1}{3}(x - 1)^2 - \frac{2}{3}$. So $f^{-1}(x) = \frac{1}{3}(x - 1)^2 - \frac{2}{3}$. Note that the domain of f^{-1} is $x \ge 1$.

Sec.6.1 # 28

23-28 Find a formula for the inverse of the function.

$$f(x) = 2x^2 - 8x, \ x \geqslant 2$$

[Solution]

$$y = f(x) = 2x^{2} - 8x, x \ge 2 \implies 2x^{2} - 8x - y = 0, x \ge 2 \implies$$

$$x = \frac{8+\sqrt{64+8y}}{4} \quad \begin{bmatrix} \text{quadratic formula with} \\ a=2, b=-8, \text{ and } c=-y \end{bmatrix} \quad = \frac{8+2\sqrt{16+2y}}{4} = 2+\frac{1}{2}\sqrt{16+2y}. \text{ Interchange } x \text{ and } y : 1 + \frac{1}{2}\sqrt{16+2y}.$$

$$y = 2 + \frac{1}{2}\sqrt{16 + 2x}$$
. So $f^{-1}(x) = 2 + \frac{1}{2}\sqrt{16 + 2x}$.

Alternate solution (by completing the square): $y=2x^2-8x, x\geq 2 \quad \Rightarrow \quad x^2-4x=y/2, x\geq 2 \quad \Rightarrow \quad x\geq 2$

$$(x-2)^2 = x^2 - 4x + 4 = \frac{y}{2} + 4 = \frac{y+8}{2} = \frac{2y+16}{4}, x \ge 2 \quad \Rightarrow \quad x-2 = +\sqrt{\frac{2y+16}{4}} \quad \Rightarrow \quad x = 2 + \frac{1}{2}\sqrt{2y+16}.$$

Interchange x and y: $y = 2 + \frac{1}{2}\sqrt{2x + 16}$. So $f^{-1}(x) = 2 + \frac{1}{2}\sqrt{2x + 16}$.