Calculus(II) HW6 (04/09)

Sec.5.3 \# 4

3-7 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curve about the y-axis.

$$
y=x^{2}, \quad y=0, \quad x=1
$$

[Solution]

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x \cdot x^{2} d x=2 \pi \int_{0}^{1} x^{3} d x \\
& =2 \pi\left[\frac{1}{4} x^{4}\right]_{0}^{1}=2 \pi \cdot \frac{1}{4}=\frac{\pi}{2}
\end{aligned}
$$

Sec.5.3 \# 6

3-7 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curve about the y-axis.

$$
y=4 x-x^{2}, \quad y=x
$$

[Solution]

$$
\begin{aligned}
4 x & -x^{2}=x \Leftrightarrow 0=x^{2}-3 x \Leftrightarrow 0=x(x-3) \Leftrightarrow \\
V & =\int_{0}^{3} 2 \pi x\left[\left(4 x-x^{2}\right)-x\right] d x \\
& =2 \pi \int_{0}^{3}\left(-x^{3}+3 x^{2}\right) d x \\
& =2 \pi\left[-\frac{1}{4} x^{4}+x^{3}\right]_{0}^{3} \\
& =2 \pi\left(-\frac{81}{4}+27\right)=2 \pi\left(\frac{27}{4}\right)=\frac{27}{2} \pi
\end{aligned}
$$

Sec.5.3 \# 11

9-14 Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves about the x-axis.

$$
y=x^{3 / 2}, \quad y=8, \quad x=0
$$

[Solution]
$y=x^{3 / 2} \Rightarrow x=y^{2 / 3}$. The shell has radius y, circumference $2 \pi y$, and height $y^{2 / 3}$, so

$$
\begin{aligned}
V & =\int_{0}^{8} 2 \pi y\left(y^{2 / 3}\right) d y=2 \pi \int_{0}^{8} y^{5 / 3} d y \\
& =2 \pi\left[\frac{3}{8} y^{8 / 3}\right]_{0}^{8} \\
& =2 \pi \cdot \frac{3}{8} \cdot 256=192 \pi
\end{aligned}
$$

Sec.5.3 \# 15
15-20 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis.

$$
y=x^{3}, y=8, x=0 ; \quad \text { about } x=3
$$

[Solution]
The shell has radius $3-x$, circumference
$2 \pi(3-x)$, and height $8-x^{3}$.

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi(3-x)\left(8-x^{3}\right) d x \\
& =2 \pi \int_{0}^{2}\left(x^{4}-3 x^{3}-8 x+24\right) d x \\
& =2 \pi\left[\frac{1}{5} x^{5}-\frac{3}{4} x^{4}-4 x^{2}+24 x\right]_{0}^{2} \\
& =2 \pi\left(\frac{32}{5}-12-16+48\right)=2 \pi\left(\frac{132}{5}\right)=\frac{264 \pi}{5}
\end{aligned}
$$

Sec.6.1 \# 11

3-16 A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

$$
g(x)=1-\sin x
$$

[Solution]
$g(x)=1-\sin x . \quad g(0)=1$ and $g(\pi)=1$, so g is not one-to-one.

Sec.6.1 \# 24

23-28 Find a formula for the inverse of the function.
$f(x)=\frac{4 x-1}{2 x+3}$
$3 y+1=(4-2 y) x \Rightarrow x=\frac{3 y+1}{4-2 y}$. Interchange x and $y: y=\frac{3 x+1}{4-2 x}$. So $f^{-1}(x)=\frac{3 x+1}{4-2 x}$.

Sec.6.1 \# 25

23-28 Find a formula for the inverse of the function.

$$
f(x)=1+\sqrt{2+3 x}
$$

[Solution]
$y=f(x)=1+\sqrt{2+3 x} \quad(y \geq 1) \quad \Rightarrow \quad y-1=\sqrt{2+3 x} \quad \Rightarrow \quad(y-1)^{2}=2+3 x \quad \Rightarrow \quad(y-1)^{2}-2=3 x \quad \Rightarrow$
$x=\frac{1}{3}(y-1)^{2}-\frac{2}{3}$. Interchange x and $y: \quad y=\frac{1}{3}(x-1)^{2}-\frac{2}{3}$. So $f^{-1}(x)=\frac{1}{3}(x-1)^{2}-\frac{2}{3}$. Note that the domain of f^{-1}
is $x \geq 1$.

Sec.6.1 \# 28

23-28 Find a formula for the inverse of the function.

$$
f(x)=2 x^{2}-8 x, x \geqslant 2
$$

[Solution]
$y=f(x)=2 x^{2}-8 x, x \geq 2 \quad \Rightarrow \quad 2 x^{2}-8 x-y=0, x \geq 2 \quad \Rightarrow$
$x=\frac{8+\sqrt{64+8 y}}{4}\left[\begin{array}{c}\text { quadratic formula with } \\ a=2, b=-8, \text { and } c=-y\end{array}\right]=\frac{8+2 \sqrt{16+2 y}}{4}=2+\frac{1}{2} \sqrt{16+2 y}$. Interchange x and y :
$y=2+\frac{1}{2} \sqrt{16+2 x}$. So $f^{-1}(x)=2+\frac{1}{2} \sqrt{16+2 x}$.
Alternate solution (by completing the square): $y=2 x^{2}-8 x, x \geq 2 \quad \Rightarrow \quad x^{2}-4 x=y / 2, x \geq 2 \Rightarrow$
$(x-2)^{2}=x^{2}-4 x+4=\frac{y}{2}+4=\frac{y+8}{2}=\frac{2 y+16}{4}, x \geq 2 \quad \Rightarrow \quad x-2=+\sqrt{\frac{2 y+16}{4}} \Rightarrow x=2+\frac{1}{2} \sqrt{2 y+16}$.
Interchange x and y : $\quad y=2+\frac{1}{2} \sqrt{2 x+16}$. So $f^{-1}(x)=2+\frac{1}{2} \sqrt{2 x+16}$.

