Calculus(II) HW3 (3/12)

Sec. 4.3 \# 16
Use Part 1 of the Fundamental Theorem of Calculus to find
the derivative of the function.
$y=\int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t$
[Solution]
Let $u=\tan x$. Then $\frac{d u}{d x}=\sec ^{2} x$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so
$y^{\prime}=\frac{d}{d x} \int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t=\frac{d}{d u} \int_{0}^{u} \sqrt{t+\sqrt{t}} d t \cdot \frac{d u}{d x}=\sqrt{u+\sqrt{u}} \frac{d u}{d x}=\sqrt{\tan x+\sqrt{\tan x}} \sec ^{2} x$.
Sec. 4.3 \# 17

Use Part 1 of the Fundamental Theorem of Calculus to find

the derivative of the function.
$y=\int_{\sqrt{x}}^{\pi / 4} \theta \tan \theta d \theta$
[Solution]
Let $u=\sqrt{x}$. Then $\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so
$y^{\prime}=\frac{d}{d x} \int_{\sqrt{x}}^{\pi / 4} \theta \tan \theta d \theta=-\frac{d}{d u} \int_{\pi / 4}^{\sqrt{x}} \theta \tan \theta d \theta \cdot \frac{d u}{d x}=-u \tan u \frac{d u}{d x}=-\sqrt{x} \tan \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2} \tan \sqrt{x}$
Sec. 4.3 \# 21
Evaluate the integral.

$$
\int_{0}^{2}\left(\frac{4}{5} t^{3}-\frac{3}{4} t^{2}+\frac{2}{5} t\right) d t
$$

[Solution]
$\int_{0}^{2}\left(\frac{4}{5} t^{3}-\frac{3}{4} t^{2}+\frac{2}{5} t\right) d t=\left[\frac{1}{5} t^{4}-\frac{1}{4} t^{3}+\frac{1}{5} t^{2}\right]_{0}^{2}=\left(\frac{16}{5}-2+\frac{4}{5}\right)-0=2$
Sec. 4.3 \# 25
Evaluate the integral.
$\int_{1}^{2} \frac{3}{t^{4}} d t$
[Solution]
$\int_{1}^{2} \frac{3}{t^{4}} d t=3 \int_{1}^{2} t^{-4} d t=3\left[\frac{t^{-3}}{-3}\right]_{1}^{2}=\frac{3}{-3}\left[\frac{1}{t^{3}}\right]_{1}^{2}=-1\left(\frac{1}{8}-1\right)=\frac{7}{8}$

Sec. 4.3 \# 28
Evaluate the integral.

$$
\int_{0}^{1}(3+x \sqrt{x}) d x
$$

[Solution]
$\int_{0}^{1}(3+x \sqrt{x}) d x=\int_{0}^{1}\left(3+x^{3 / 2}\right) d x=\left[3 x+\frac{2}{5} x^{5 / 2}\right]_{0}^{1}=\left[\left(3+\frac{2}{5}\right)-0\right]=\frac{17}{5}$

Sec. 4.3 \# 53

Find the derivative of the function.

$$
g(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u
$$

$\left[\right.$ Hint: $\left.\int_{2 x}^{3 x} f(u) d u=\int_{2 x}^{0} f(u) d u+\int_{0}^{3 x} f(u) d u\right]$
[Solution]
$g(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u=\int_{2 x}^{0} \frac{u^{2}-1}{u^{2}+1} d u+\int_{0}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u=-\int_{0}^{2 x} \frac{u^{2}-1}{u^{2}+1} d u+\int_{0}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u \Rightarrow$
$g^{\prime}(x)=-\frac{(2 x)^{2}-1}{(2 x)^{2}+1} \cdot \frac{d}{d x}(2 x)+\frac{(3 x)^{2}-1}{(3 x)^{2}+1} \cdot \frac{d}{d x}(3 x)=-2 \cdot \frac{4 x^{2}-1}{4 x^{2}+1}+3 \cdot \frac{9 x^{2}-1}{9 x^{2}+1}$

Sec. 4.3 \# 56

Find the derivative of the function.

$$
g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t
$$

[Solution]

$$
\begin{aligned}
& g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t=\int_{\tan x}^{1} \frac{d t}{\sqrt{2+t^{4}}}+\int_{1}^{x^{2}} \frac{d t}{\sqrt{2+t^{4}}}=-\int_{1}^{\tan x} \frac{d t}{\sqrt{2+t^{4}}}+\int_{1}^{x^{2}} \frac{d t}{\sqrt{2+t^{4}}} \Rightarrow \\
& g^{\prime}(x)=\frac{-1}{\sqrt{2+\tan ^{4} x}} \frac{d}{d x}(\tan x)+\frac{1}{\sqrt{2+x^{8}}} \frac{d}{d x}\left(x^{2}\right)=-\frac{\sec ^{2} x}{\sqrt{2+\tan ^{4} x}}+\frac{2 x}{\sqrt{2+x^{8}}}
\end{aligned}
$$

Sec. 4.4 \# 9

Find the general indefinite integral.

$$
\int v\left(v^{2}+2\right)^{2} d v
$$

[Solution]
$\int v\left(v^{2}+2\right)^{2} d v=\int v\left(v^{4}+4 v^{2}+4\right) d v=\int\left(v^{5}+4 v^{3}+4 v\right) d v=\frac{v^{6}}{6}+4 \frac{v^{4}}{4}+4 \frac{v^{2}}{2}+C=\frac{1}{6} v^{6}+v^{4}+2 v^{2}+C$

Sec. 4.4 \# 11

Find the general indefinite integral.
$\int \frac{1+\sqrt{x}+x}{\sqrt{x}} d x$
[Solution]

$$
\begin{aligned}
\int \frac{1+\sqrt{x}+x}{\sqrt{x}} d x & =\int\left(\frac{1}{\sqrt{x}}+1+\sqrt{x}\right) d x=\int\left(x^{-1 / 2}+1+x^{1 / 2}\right) d x \\
& =2 x^{1 / 2}+x+\frac{2}{3} x^{3 / 2}+C=2 \sqrt{x}+x+\frac{2}{3} x^{3 / 2}+C
\end{aligned}
$$

Sec. 4.4 \# 16

Find the general indefinite integral.

$$
\int \frac{\sin 2 x}{\sin x} d x
$$

[Solution]
$\int \frac{\sin 2 x}{\sin x} d x=\int \frac{2 \sin x \cos x}{\sin x} d x=\int 2 \cos x d x=2 \sin x+C$
Sec. 4.4 \# 25

Evaluate the integral.

$$
\int_{0}^{\pi}(4 \sin \theta-3 \cos \theta) d \theta
$$

[Solution]

$\int_{0}^{\pi}(4 \sin \theta-3 \cos \theta) d \theta=[-4 \cos \theta-3 \sin \theta]_{0}^{\pi}=(4-0)-(-4-0)=8$
Sec. 4.4 \# 28

$$
\begin{aligned}
& \text { Evaluate the integral. } \\
& \int_{1}^{2}\left(2-\frac{1}{p^{2}}\right)^{2} d p
\end{aligned}
$$

[Solution]

$$
\begin{aligned}
\int_{1}^{2}\left(2-\frac{1}{p^{2}}\right)^{2} d p & =\int_{1}^{2}\left(4-\frac{4}{p^{2}}+\frac{1}{p^{4}}\right) d p=\int_{1}^{2}\left(4-4 p^{-2}+p^{-4}\right) d p=\left[4 p+4 p^{-1}-\frac{1}{3} p^{-3}\right]_{1}^{2} \\
& =\left(8+2-\frac{1}{24}\right)-\left(4+4-\frac{1}{3}\right)=2-\frac{1}{24}+\frac{1}{3}=\frac{48-1+8}{24}=\frac{55}{24}
\end{aligned}
$$

Sec. 4.4 \# 34

Evaluate the integral.

$$
\int_{0}^{\pi / 3} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta
$$

[Solution]

$$
\begin{aligned}
\int_{0}^{\pi / 3} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta & =\int_{0}^{\pi / 3} \frac{\sin \theta\left(1+\tan ^{2} \theta\right)}{\sec ^{2} \theta} d \theta=\int_{0}^{\pi / 3} \frac{\sin \theta \sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\int_{0}^{\pi / 3} \sin \theta d \theta \\
& =[-\cos \theta]_{0}^{\pi / 3}=-\frac{1}{2}-(-1)=\frac{1}{2}
\end{aligned}
$$

Sec. 4.4 \# 39

Evaluate the integral.

$$
\int_{2}^{5}|x-3| d x
$$

[Solution]

$$
|x-3|=\left\{\begin{array}{ll}
x-3 & \text { if } x-3 \geq 0 \\
-(x-3) & \text { if } x-3<0
\end{array}= \begin{cases}x-3 & \text { if } x \geq 3 \\
3-x & \text { if } x<3\end{cases}\right.
$$

Thus,

$$
\begin{aligned}
\int_{2}^{5}|x-3| d x & =\int_{2}^{3}(3-x) d x+\int_{3}^{5}(x-3) d x=\left[3 x-\frac{1}{2} x^{2}\right]_{2}^{3}+\left[\frac{1}{2} x^{2}-3 x\right]_{3}^{5} \\
& =\left(9-\frac{9}{2}\right)-(6-2)+\left(\frac{25}{2}-15\right)-\left(\frac{9}{2}-9\right)=\frac{5}{2}
\end{aligned}
$$

