Calculus(II) HW12 (05/28)

Sec. 6.8 \# 30
8-68 Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x}
$$

[Solution]
This limit has the form $\frac{0}{0}$.

$$
\begin{aligned}
& \begin{aligned}
& \lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{1-\cos x}{1-\sec ^{2} x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{-(-\sin x)}{-2 \sec x(\sec x \tan x)}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x\left(\frac{\cos x}{\sin x}\right)}{\sec ^{2} x} \\
&=-\frac{1}{2} \lim _{x \rightarrow 0} \cos ^{3} x=-\frac{1}{2}(1)^{3}=-\frac{1}{2}
\end{aligned} \\
& \text { Another method is to write the limit as } \lim _{x \rightarrow 0} \frac{1-\frac{\sin x}{x}}{1-\frac{\tan x}{x}} .
\end{aligned}
$$

Sec.6.8 \# 46
8-68 Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

$$
\lim _{x \rightarrow-\infty} x \ln \left(1-\frac{1}{x}\right)
$$

[Solution]
This limit has the form $(-\infty) \cdot 0$.
$\lim _{x \rightarrow-\infty} x \ln \left(1-\frac{1}{x}\right)=\lim _{x \rightarrow-\infty} \frac{\ln \left(1-\frac{1}{x}\right)}{\frac{1}{x}} \stackrel{H}{=} \lim _{x \rightarrow-\infty} \frac{\frac{1}{1-1 / x} \cdot \frac{1}{x^{2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{-1}{1-\frac{1}{x}}=\frac{-1}{1}=-1$

Sec. 6.8 \# 53
8-68 Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
[Solution]
This limit has the form $\infty-\infty$.
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)=\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1-x}{x\left(e^{x}-1\right)} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x e^{x}+e^{x}-1} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x e^{x}+e^{x}+e^{x}}=\frac{1}{0+1+1}=\frac{1}{2}$

Sec. 6.8 \# 62
8-68 Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.
$\lim _{x \rightarrow \infty} x^{(\ln 2) /(1+\ln x)}$
[Solution]
$y=x^{(\ln 2) /(1+\ln x)} \Rightarrow \ln y=\frac{\ln 2}{1+\ln x} \ln x \Rightarrow$
$\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{(\ln 2)(\ln x)}{1+\ln x} \stackrel{\text { H }}{=} \lim _{x \rightarrow \infty} \frac{(\ln 2)(1 / x)}{1 / x}=\lim _{x \rightarrow \infty} \ln 2=\ln 2$, so $\lim _{x \rightarrow \infty} x^{(\ln 2) /(1+\ln x)}=\lim _{x \rightarrow \infty} e^{\ln y}=e^{\ln 2}=2$.

Sec. 6.8 \# 67
8-68 Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

$$
\lim _{x \rightarrow 0^{+}}(1+\sin 3 x)^{1 / x}
$$

[Solution]
$y=(1+\sin 3 x)^{1 / x} \Rightarrow \ln y=\frac{1}{x} \ln (1+\sin 3 x) \Rightarrow$
$\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+\sin 3 x)}{x} \stackrel{\text { H }}{=} \lim _{x \rightarrow 0^{+}} \frac{[1 /(1+\sin 3 x)] \cdot 3 \cos 3 x}{1}=\lim _{x \rightarrow 0^{+}} \frac{3 \cos 3 x}{1+\sin 3 x}=\frac{3 \cdot 1}{1+0}=3 \Rightarrow$
$\lim _{x \rightarrow 0^{+}}(1+\sin 3 x)^{1 / x}=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{3}$

Sec.7.1 \# 7

Evaluate the integral.

$\int\left(x^{2}+2 x\right) \cos x d x$
[Solution]
First let $u=x^{2}+2 x, d v=\cos x d x \Rightarrow d u=(2 x+2) d x, v=\sin x$. Then by Equation 2,
$I=\int\left(x^{2}+2 x\right) \cos x d x=\left(x^{2}+2 x\right) \sin x-\int(2 x+2) \sin x d x$. Next let $U=2 x+2, d V=\sin x d x \Rightarrow d U=2 d x$,
$V=-\cos x$, so $\int(2 x+2) \sin x d x=-(2 x+2) \cos x-\int-2 \cos x d x=-(2 x+2) \cos x+2 \sin x$. Thus,
$I=\left(x^{2}+2 x\right) \sin x+(2 x+2) \cos x-2 \sin x+C$.

Sec.7.1 \# 10

Evaluate the integral.

$$
\int \ln \sqrt{x} d x
$$

[Solution]
Let $u=\ln \sqrt{x}, d v=d x \quad \Rightarrow \quad d u=\frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} d x=\frac{1}{2 x} d x, v=x$. Then by Equation 2,
$\int \ln \sqrt{x} d x=x \ln \sqrt{x}-\int x \cdot \frac{1}{2 x} d x=x \ln \sqrt{x}-\int \frac{1}{2} d x=x \ln \sqrt{x}-\frac{1}{2} x+C$.
Note: We could start by using $\ln \sqrt{x}=\frac{1}{2} \ln x$.

Sec.7.1 \# 13

Evaluate the integral.

$\int t \csc ^{2} t d t$
[Solution]
Let $u=t, d v=\csc ^{2} t d t \Rightarrow d u=d t, v=-\cot t$. Then by Equation 2,

$$
\begin{aligned}
\int t \csc ^{2} t d t & =-t \cot t-\int-\cot t d t=-t \cot t+\int \frac{\cos t}{\sin t} d t=-t \cot t+\int \frac{1}{z} d z \quad\left[\begin{array}{c}
z=\sin t, \\
d z=\cos t d t
\end{array}\right] \\
& =-t \cot t+\ln |z|+C=-t \cot t+\ln |\sin t|+C
\end{aligned}
$$

Sec.7.1 \# 19

Evaluate the integral.

$\int z^{3} e^{z} d z$
[Solution]
First let $u=z^{3}, d v=e^{z} d z \Rightarrow d u=3 z^{2} d z, v=e^{z}$. Then $I_{1}=\int z^{3} e^{z} d z=z^{3} e^{z}-3 \int z^{2} e^{z} d z$. Next let $u_{1}=z^{2}$, $d v_{1}=e^{z} d z \Rightarrow d u_{1}=2 z d z, v_{1}=e^{z}$. Then $I_{2}=z^{2} e^{z}-2 \int z e^{z} d z$. Finally, let $u_{2}=z, d v_{2}=e^{z} d z \Rightarrow d u_{2}=d z$, $v_{2}=e^{z}$. Then $\int z e^{z} d z=z e^{z}-\int e^{z} d z=z e^{z}-e^{z}+C_{1}$. Substituting in the expression for I_{2}, we get $I_{2}=z^{2} e^{z}-2\left(z e^{z}-e^{z}+C_{1}\right)=z^{2} e^{z}-2 z e^{z}+2 e^{z}-2 C_{1}$. Substituting the last expression for I_{2} into I_{1} gives $I_{1}=z^{3} e^{z}-3\left(z^{2} e^{z}-2 z e^{z}+2 e^{z}-2 C_{1}\right)=z^{3} e^{z}-3 z^{2} e^{z}+6 z e^{z}-6 e^{z}+C$, where $C=6 C_{1}$.

