Calculus(II) HW2 (3/5)

Sec. 4.2 \# 22
Use the form of the definition of the integral given in
Theorem 4 to evaluate the integral.

$$
\int_{1}^{4}\left(x^{2}+2 x-5\right) d x
$$

[Solution]

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}+2 x-5\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=3 / n \text { and } x_{i}=1+3 i / n\right] \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(1+\frac{3 i}{n}\right)^{2}+2\left(1+\frac{3 i}{n}\right)-5\right]\left(\frac{3}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left[\sum_{i=1}^{n}\left(1+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}+2+\frac{6 i}{n}-5\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left[\sum_{i=1}^{n}\left(\frac{9}{n^{2}} \cdot i^{2}+\frac{12}{n} \cdot i-2\right)\right]=\lim _{n \rightarrow \infty} \frac{3}{n}\left[\frac{9}{n^{2}} \sum_{i=1}^{n} i^{2}+\frac{12}{n} \sum_{i=1}^{n} i-\sum_{i=1}^{n} 2\right] \\
& =\lim _{n \rightarrow \infty}\left(\frac{27}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{36}{n^{2}} \cdot \frac{n(n+1)}{2}-\frac{6}{n} \cdot n\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{9}{2} \cdot \frac{n+1}{n} \cdot \frac{2 n+1}{n}+18 \cdot \frac{n+1}{n}-6\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{9}{2}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)+18\left(1+\frac{1}{n}\right)-6\right]=\frac{9}{2} \cdot 1 \cdot 2+18 \cdot 1-6=21
\end{aligned}
$$

Sec. 4.2 \# 29

Express the integral as a limit of Riemann sums. Do not

evaluate the limit.

$$
\int_{1}^{3} \sqrt{4+x^{2}} d x
$$

[Solution]
$f(x)=\sqrt{4+x^{2}}, a=1, b=3$, and $\Delta x=\frac{3-1}{n}=\frac{2}{n}$. Using Theorem 4, we get $x_{i}^{*}=x_{i}=1+i \Delta x=1+\frac{2 i}{n}$, so
$\int_{1}^{3} \sqrt{4+x^{2}} d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4+\left(1+\frac{2 i}{n}\right)^{2}} \cdot \frac{2}{n}$.

Sec. 4.2 \# 38

Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-5}^{5}\left(x-\sqrt{25-x^{2}}\right) d x
$$

[Solution]
$\int_{-5}^{5}\left(x-\sqrt{25-x^{2}}\right) d x=\int_{-5}^{5} x d x-\int_{-5}^{5} \sqrt{25-x^{2}} d x$. By symmetry, the value of the first integral is 0 since the shaded area above the x-axis equals the shaded area below the x-axis. The second integral can be interpreted as one half the area of a circle with radius 5 ; that is, $\frac{1}{2} \pi(5)^{2}=\frac{25}{2} \pi$. Thus, the value of

the original integral is $0-\frac{25}{2} \pi=-\frac{25}{2} \pi$.

Sec. 4.2 \# 39

Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-4}^{3}\left|\frac{1}{2} x\right| d x
$$

[Solution]

$\int_{-4}^{3}\left|\frac{1}{2} x\right| d x$ can be interpreted as the sum of the areas of the two shaded triangles; that is, $\frac{1}{2}(4)(2)+\frac{1}{2}(3)\left(\frac{3}{2}\right)=4+\frac{9}{4}=\frac{25}{4}$.

Sec. 4.2 \# 48

$$
\text { If } \int_{2}^{8} f(x) d x=7.3 \text { and } \int_{2}^{4} f(x) d x=5.9, \text { find } \int_{4}^{8} f(x) d x
$$

[Solution]
$\int_{2}^{4} f(x) d x+\int_{4}^{8} f(x) d x=\int_{2}^{8} f(x) d x$, so $\int_{4}^{8} f(x) d x=\int_{2}^{8} f(x) d x-\int_{2}^{4} f(x) d x=7.3-5.9=1.4$.

Sec. 4.2 \# 57

Use the properties of integrals to verify the inequality without evaluating the integrals
$2 \leqslant \int_{-1}^{1} \sqrt{1+x^{2}} d x \leqslant 2 \sqrt{2}$
[Solution]
If $-1 \leq x \leq 1$, then $0 \leq x^{2} \leq 1$ and $1 \leq 1+x^{2} \leq 2$, so $1 \leq \sqrt{1+x^{2}} \leq \sqrt{2}$ and
$1[1-(-1)] \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq \sqrt{2}[1-(-1)]$ [Property 8]; that is, $2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}$.

Sec. 4.2 \# 61

Use Property 8 of integrals to estimate the value of the integral.

$$
\int_{0}^{2} \frac{1}{1+x^{2}} d x
$$

[Solution]

If $0 \leq x \leq 2$, then $1 \leq 1+x^{2} \leq 5$ and $\frac{1}{5} \leq \frac{1}{1+x^{2}} \leq 1$, so $\frac{1}{5}(2-0) \leq \int_{0}^{2} \frac{1}{1+x^{2}} d x \leq 1(2-0)$; that is, $\frac{2}{5} \leq \int_{0}^{2} \frac{1}{1+x^{2}} d x \leq 2$.

Sec. 4.3 \# 9

Use Part 1 of the Fundamental Theorem of Calculus to find

the derivative of the function.

$$
g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t
$$

[Solution]
$f(t)=\frac{1}{t^{3}+1}$ and $g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$, so by FTC1, $g^{\prime}(x)=f(x)=\frac{1}{x^{3}+1}$. Note that the lower limit, 1 , could be any real number greater than -1 and not affect this answer.

Sec. 4.3 \# 14

Use Part 1 of the Fundamental Theorem of Calculus to find
the derivative of the function.
$G(x)=\int_{x}^{1} \cos \sqrt{t} d t$
[Solution]
$G(x)=\int_{x}^{1} \cos \sqrt{t} d t=-\int_{1}^{x} \cos \sqrt{t} d t \Rightarrow G^{\prime}(x)=-\frac{d}{d x} \int_{1}^{x} \cos \sqrt{t} d t=-\cos \sqrt{x}$

