Calculus(II) HW13 (06/04)

Sec.7.1 \# 23

Evaluate the integral.

$\int_{0}^{1 / 2} x \cos \pi x d x$

[Solution]
Let $u=x, d v=\cos \pi x d x \quad \Rightarrow \quad d u=d x, v=\frac{1}{\pi} \sin \pi x$. By (6),

$$
\begin{aligned}
\int_{0}^{1 / 2} x \cos \pi x d x & =\left[\frac{1}{\pi} x \sin \pi x\right]_{0}^{1 / 2}-\int_{0}^{1 / 2} \frac{1}{\pi} \sin \pi x d x=\frac{1}{2 \pi}-0-\frac{1}{\pi}\left[-\frac{1}{\pi} \cos \pi x\right]_{0}^{1 / 2} \\
& =\frac{1}{2 \pi}+\frac{1}{\pi^{2}}(0-1)=\frac{1}{2 \pi}-\frac{1}{\pi^{2}} \text { or } \frac{\pi-2}{2 \pi^{2}}
\end{aligned}
$$

Sec.7.1 \# 30

Evaluate the integral.

$\int_{1}^{\sqrt{3}} \arctan (1 / x) d x$
[Solution]
Let $u=\arctan (1 / x), d v=d x \quad \Rightarrow \quad d u=\frac{1}{1+(1 / x)^{2}} \cdot \frac{-1}{x^{2}} d x=\frac{-d x}{x^{2}+1}, v=x . \operatorname{By}(6)$,

$$
\begin{aligned}
\int_{1}^{\sqrt{3}} \arctan \left(\frac{1}{x}\right) d x & =\left[x \arctan \left(\frac{1}{x}\right)\right]_{1}^{\sqrt{3}}+\int_{1}^{\sqrt{3}} \frac{x d x}{x^{2}+1}=\sqrt{3} \frac{\pi}{6}-1 \cdot \frac{\pi}{4}+\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{1}^{\sqrt{3}} \\
& =\frac{\pi \sqrt{3}}{6}-\frac{\pi}{4}+\frac{1}{2}(\ln 4-\ln 2)=\frac{\pi \sqrt{3}}{6}-\frac{\pi}{4}+\frac{1}{2} \ln \frac{4}{2}=\frac{\pi \sqrt{3}}{6}-\frac{\pi}{4}+\frac{1}{2} \ln 2
\end{aligned}
$$

Sec.7.2 \# 4

Evaluate the integral.

$$
\int_{0}^{\pi / 2} \sin ^{5} x d x
$$

[Solution]

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{5} x d x & =\int_{0}^{\pi / 2} \sin ^{4} x \sin x d x=\int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right)^{2} \sin x d x \stackrel{\mathrm{c}}{=} \int_{1}^{0}\left(1-u^{2}\right)^{2}(-d u) \\
& =\int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=\left[u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right]_{0}^{1}=\left(1-\frac{2}{3}+\frac{1}{5}\right)-0=\frac{15-10+3}{15}=\frac{8}{15}
\end{aligned}
$$

Sec.7.2 \# 8

Evaluate the integral.

$\int \frac{\sin ^{3}(\sqrt{x})}{\sqrt{x}} d x$
[Solution]
Let $y=\sqrt{x}$, so that $d y=\frac{1}{2 \sqrt{x}} d x$ and $d x=2 y d y$. Then

$$
\begin{aligned}
\int \frac{\sin ^{3}(\sqrt{x})}{\sqrt{x}} d x & =\int \frac{\sin ^{3} y}{y}(2 y d y)=2 \int \sin ^{3} y d y=2 \int \sin ^{2} y \sin y d y=2 \int\left(1-\cos ^{2} y\right) \sin y d y \\
& \stackrel{c}{=} 2 \int\left(1-u^{2}\right)(-d u)=2 \int\left(u^{2}-1\right) d u=2\left(\frac{1}{3} u^{3}-u\right)+C=\frac{2}{3} \cos ^{3} y-2 \cos y+C \\
& =\frac{2}{3} \cos ^{3}(\sqrt{x})-2 \cos \sqrt{x}+C
\end{aligned}
$$

Sec.7.2 \# 11

Evaluate the integral.

$\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x$
[Solution]

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x & =\int_{0}^{\pi / 2} \frac{1}{4}\left(4 \sin ^{2} x \cos ^{2} x\right) d x=\int_{0}^{\pi / 2} \frac{1}{4}(2 \sin x \cos x)^{2} d x=\frac{1}{4} \int_{0}^{\pi / 2} \sin ^{2} 2 x d x \\
& =\frac{1}{4} \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 x) d x=\frac{1}{8} \int_{0}^{\pi / 2}(1-\cos 4 x) d x=\frac{1}{8}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 2}=\frac{1}{8}\left(\frac{\pi}{2}\right)=\frac{\pi}{16}
\end{aligned}
$$

Sec.7.2 \# 12

Evaluate the integral.

$$
\int_{0}^{\pi / 2}(2-\sin \theta)^{2} d \theta
$$

[Solution]

$$
\begin{aligned}
\int_{0}^{\pi / 2}(2-\sin \theta)^{2} d \theta & =\int_{0}^{\pi / 2}\left(4-4 \sin \theta+\sin ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2}\left[4-4 \sin \theta+\frac{1}{2}(1-\cos 2 \theta)\right] d \theta \\
& =\int_{0}^{\pi / 2}\left(\frac{9}{2}-4 \sin \theta-\frac{1}{2} \cos 2 \theta\right) d \theta=\left[\frac{9}{2} \theta+4 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2} \\
& =\left(\frac{9 \pi}{4}+0-0\right)-(0+4-0)=\frac{9}{4} \pi-4
\end{aligned}
$$

Sec.7.2 \# 21

Evaluate the integral.

$\int \tan x \sec ^{3} x d x$
[Solution]

$$
\begin{aligned}
\int \tan x \sec ^{3} x d x & =\int \tan x \sec x \sec ^{2} x d x=\int u^{2} d u \quad[u=\sec x, d u=\sec x \tan x d x] \\
& =\frac{1}{3} u^{3}+C=\frac{1}{3} \sec ^{3} x+C
\end{aligned}
$$

Sec.7.2 \# 26

Evaluate the integral.

$$
\int_{0}^{\pi / 4} \sec ^{6} \theta \tan ^{6} \theta d \theta
$$

[Solution]

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec ^{6} \theta \tan ^{6} \theta d \theta & =\int_{0}^{\pi / 4} \tan ^{6} \theta \sec ^{4} \theta \sec ^{2} \theta d \theta=\int_{0}^{\pi / 4} \tan ^{6} \theta\left(1+\tan ^{2} \theta\right)^{2} \sec ^{2} \theta d \theta \\
& =\int_{0}^{1} u^{6}\left(1+u^{2}\right)^{2} d u \quad\left[\begin{array}{c}
u=\tan \theta, \\
d u=\sec ^{2} \theta d \theta
\end{array}\right] \\
& =\int_{0}^{1} u^{6}\left(u^{4}+2 u^{2}+1\right) d u=\int_{0}^{1}\left(u^{10}+2 u^{8}+u^{6}\right) d u \\
& =\left[\frac{1}{11} u^{11}+\frac{2}{9} u^{9}+\frac{1}{7} u^{7}\right]_{0}^{1}=\frac{1}{11}+\frac{2}{9}+\frac{1}{7}=\frac{63+154+99}{693}=\frac{316}{693}
\end{aligned}
$$

