Calculus(II) HW8 (05/03)

Sec.6.2* \# 3
Use the Laws of Logarithms to expand the quantity.
$\ln \frac{x^{2}}{y^{3} z^{4}}$
[Solution]
$\ln \frac{x^{2}}{y^{3} z^{4}}=\ln x^{2}-\ln \left(y^{3} z^{4}\right)=2 \ln x-\left(\ln y^{3}+\ln z^{4}\right)=2 \ln x-3 \ln y-4 \ln z$
Sec.6.2* \# 4
Use the Laws of Logarithms to expand the quantity.

$$
\ln \left(s^{4} \sqrt{t \sqrt{u}}\right)
$$

[Solution]
$\ln \left(s^{4} \sqrt{t \sqrt{u}}\right)=\ln s^{4}\left(t u^{1 / 2}\right)^{1 / 2}=\ln s^{4} t^{1 / 2} u^{1 / 4}=\ln s^{4}+\ln t^{1 / 2}+\ln u^{1 / 4}=4 \ln s+\frac{1}{2} \ln t+\frac{1}{4} \ln u$
Sec.6.2* \# 9

Express the quantity as a single logarithm.

$$
\frac{1}{3} \ln (x+2)^{3}+\frac{1}{2}\left[\ln x-\ln \left(x^{2}+3 x+2\right)^{2}\right]
$$

[Solution]

$$
\begin{array}{rlrl}
\frac{1}{3} \ln (x+2)^{3}+\frac{1}{2}\left[\ln x-\ln \left(x^{2}+3 x+2\right)^{2}\right] & =\ln \left[(x+2)^{3}\right]^{1 / 3}+\frac{1}{2} \ln \frac{x}{\left(x^{2}+3 x+2\right)^{2}} & & \text { [by Laws 3, 2] } \\
& =\ln (x+2)+\ln \frac{\sqrt{x}}{x^{2}+3 x+2} & \text { [by Law 3] } \\
& =\ln \frac{(x+2) \sqrt{x}}{(x+1)(x+2)} & & \text { [by Law 1] } \\
& =\ln \frac{\sqrt{x}}{x+1} &
\end{array}
$$

Note that since $\ln x$ is defined for $x>0$, we have $x+1, x+2$, and $x^{2}+3 x+2$ all positive, and hence their logarithms are defined.

Sec.6.2* \# 10
Express the quantity as a single logarithm.
$\ln b+2 \ln c-3 \ln d$
[Solution]

$$
\begin{aligned}
\ln b+2 \ln c-3 \ln d & =\ln b+\ln c^{2}-\ln d^{3} & & {[\text { by Law 3] }} \\
& =\ln b c^{2}-\ln d^{3} & & {[\text { by Law 1] }} \\
& =\ln \frac{b c^{2}}{d^{3}} & & {[\text { by Law 2] }}
\end{aligned}
$$

Sec.6.2* \# 16

Find the limit.

$$
\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)]
$$

[Solution]

$$
\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)]=\lim _{x \rightarrow \infty} \ln \left(\frac{2+x}{1+x}\right)=\lim _{x \rightarrow \infty} \ln \left(\frac{2 / x+1}{1 / x+1}\right)=\ln \frac{1}{1}=\ln 1=0
$$

Sec.6.2* \# 20

Differentiate the function.

$$
f(x)=\ln \left(\sin ^{2} x\right)
$$

[Solution]

$$
f(x)=\ln \left(\sin ^{2} x\right)=\ln (\sin x)^{2}=2 \ln |\sin x| \Rightarrow f^{\prime}(x)=2 \cdot \frac{1}{\sin x} \cdot \cos x=2 \cot x
$$

Sec.6.2* \# 23

Differentiate the function.

$f(x)=\sin x \ln (5 x)$
[Solution]
$f(x)=\sin x \ln (5 x) \Rightarrow f^{\prime}(x)=\sin x \cdot \frac{1}{5 x} \cdot \frac{d}{d x}(5 x)+\ln (5 x) \cdot \cos x=\frac{\sin x \cdot 5}{5 x}+\cos x \ln (5 x)=\frac{\sin x}{x}+\cos x \ln (5 x)$
Sec.6.2* \# 27

Differentiate the function.

$G(y)=\ln \frac{(2 y+1)^{5}}{\sqrt{y^{2}+1}}$
[Solution]
$G(y)=\ln \frac{(2 y+1)^{5}}{\sqrt{y^{2}+1}}=\ln (2 y+1)^{5}-\ln \left(y^{2}+1\right)^{1 / 2}=5 \ln (2 y+1)-\frac{1}{2} \ln \left(y^{2}+1\right) \Rightarrow$
$G^{\prime}(y)=5 \cdot \frac{1}{2 y+1} \cdot 2-\frac{1}{2} \cdot \frac{1}{y^{2}+1} \cdot 2 y=\frac{10}{2 y+1}-\frac{y}{y^{2}+1}\left[\right.$ or $\left.\frac{8 y^{2}-y+10}{(2 y+1)\left(y^{2}+1\right)}\right]$
Sec.6.2* \# 29
Differentiate the function.

$$
F(t)=(\ln t)^{2} \sin t
$$

[Solution]

$$
F(t)=(\ln t)^{2} \sin t \Rightarrow F^{\prime}(t)=(\ln t)^{2} \cos t+\sin t \cdot 2 \ln t \cdot \frac{1}{t}=\ln t\left(\ln t \cos t+\frac{2 \sin t}{t}\right)
$$

Sec.6.2* \# 36

Differentiate the function.

$$
y=\ln (\csc x-\cot x)
$$

[Solution]
$y=\ln (\csc x-\cot x) \quad \Rightarrow$
$y^{\prime}=\frac{1}{\csc x-\cot x} \frac{d}{d x}(\csc x-\cot x)=\frac{1}{\csc x-\cot x}\left(-\csc x \cot x+\csc ^{2} x\right)=\frac{\csc x(\csc x-\cot x)}{\csc x-\cot x}=\csc x$
Sec.6.2* \# 42

Differentiate f and find the domain of f.

 $f(x)=\ln \ln \ln x$[Solution]
$f(x)=\ln \ln \ln x \quad \Rightarrow \quad f^{\prime}(x)=\frac{1}{\ln \ln x} \cdot \frac{1}{\ln x} \cdot \frac{1}{x}$.
$\operatorname{Dom}(f)=\{x \mid \ln \ln x>0\}=\{x \mid \ln x>1\}=\{x \mid x>e\}=(e, \infty)$.

Sec.6.2* \# 57

Discuss the curve under the guidelines of Section 3.5.

$$
y=\ln \left(1+x^{2}\right)
$$

[Solution]
$y=f(x)=\ln \left(1+x^{2}\right)$
A. $D=\mathbb{R}$
B. Both intercepts are 0 .
C. $f(-x)=f(x)$, so the curve is symmetric about the
y-axis.
D. $\lim _{x \rightarrow \pm \infty} \ln \left(1+x^{2}\right)=\infty$, no asymptotes.
E. $f^{\prime}(x)=\frac{2 x}{1+x^{2}}>0 \Leftrightarrow$
$x>0$, so f is increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$.
F. $f(0)=0$ is a local and absolute minimum.
G. $f^{\prime \prime}(x)=\frac{2\left(1+x^{2}\right)-2 x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}>0 \Leftrightarrow$

$|x|<1$, so f is CU on $(-1,1), \mathrm{CD}$ on $(-\infty,-1)$ and $(1, \infty)$.
$\operatorname{IP}(1, \ln 2)$ and $(-1, \ln 2)$.

