Calculus Quiz1(9/30)
1.

Use Part 1 of the Fundamental Theorem of Calculus to find
the derivative of the function.
$R(y)=\int_{y}^{2} t^{3} \sin t d t$
[Solution]

$$
R(y)=\int_{y}^{2} t^{3} \sin t d t=-\int_{2}^{y} t^{3} \sin t d t \Rightarrow R^{\prime}(y)=-\frac{d}{d y} \int_{2}^{y} t^{3} \sin t d t=-y^{3} \sin y
$$

2.

Express the limit as a definite integral on the given interval.
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1-x_{i}^{2}}{4+x_{i}^{2}} \Delta x, \quad[2,6]$
[Solution]
On $[2,6], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1-x_{i}^{2}}{4+x_{i}^{2}} \Delta x=\int_{2}^{6} \frac{1-x^{2}}{4+x^{2}} d x$.

