Calculus(II) HW1 (2/26)

Sec. 4.1 \# 21
21-23 Use Definition 2 to find an expression for the area under the graph of f as a limit. Do not evaluate the limit.
$f(x)=\frac{2 x}{x^{2}+1}, \quad 1 \leqslant x \leqslant 3$
[Solution]
$f(x)=\frac{2 x}{x^{2}+1}, 1 \leq x \leq 3 . \Delta x=(3-1) / n=2 / n$ and $x_{i}=1+i \Delta x=1+2 i / n$.
$A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2(1+2 i / n)}{(1+2 i / n)^{2}+1} \cdot \frac{2}{n}$.

Sec. 4.1 \# 25

24-25 Determine a region whose area is equal to the given limit. Do not evaluate the limit.
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}$
[Solution]
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}$ can be interpreted as the area of the region lying under the graph of $y=\tan x$ on the interval $\left[0, \frac{\pi}{4}\right]$, since for $y=\tan x$ on $\left[0, \frac{\pi}{4}\right]$ with $\Delta x=\frac{\pi / 4-0}{n}=\frac{\pi}{4 n}, x_{i}=0+i \Delta x=\frac{i \pi}{4 n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \tan \left(\frac{i \pi}{4 n}\right) \frac{\pi}{4 n}$. Note that this answer is not unique, since the expression for the area is the same for the function $y=\tan (x-k \pi)$ on the interval $\left[k \pi, k \pi+\frac{\pi}{4}\right]$, where k is any integer.

Sec. 4.2 \# 18

17-20 Express the limit as a definite integral on the given interval.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sqrt{1+x_{i}^{3}} \Delta x, \quad[2,5]
$$

[Solution]
On $[2,5], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sqrt{1+x_{i}^{3}} \Delta x=\int_{2}^{5} x \sqrt{1+x^{3}} d x$.

17-20 Express the limit as a definite integral on the given interval.
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\cos x_{i}}{x_{i}} \Delta x, \quad[\pi, 2 \pi]$
[Solution]

$$
\text { On }[\pi, 2 \pi], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\cos x_{i}}{x_{i}} \Delta x=\int_{\pi}^{2 \pi} \frac{\cos x}{x} d x .
$$

